Журналов:     Статей:        

Рецепт. 2021; : 323-331

Микробиота желудочно-кишечного тракта и иммунитет

Силивончик Н. Н.

https://doi.org/10.34883/PI.2021.24.3.002

Аннотация

Микробиота желудочно-кишечного тракта (ЖКТ) состоит из динамичного многовидового сообщества, живущего в определенной нише во взаимной синергии с организмом-хозяином. Недавние результаты показали роль микробиоты ЖКТ в модуляции иммунитета хозяина и развитии и прогрессировании заболеваний. Пробиотики определяются как живые микроорганизмы, которые при их назначении в адекватных количествах приносят пользу для здоровья хозяина. Среди прочего пробиотики имеют иммуномодулирующие свойства, которые обычно реализуются непосредственно, увеличивая активность макрофагов или естественных клетоккиллеров, модулируя секрецию иммуноглобулинов или цитокинов, или косвенно, усиливая эпителиальный барьер кишечника, изменяя секрецию слизи и конкурентно исключая другие (патогенные) бактерии.

Список литературы

1. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature, vol.86, pp.207–214. doi: 10.1038/nature11234.

2. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature, vol. 486, pp. 215–221. doi: 10.1038/nature11209.

3. Stoma I., Karpov I. (2018) The human microbiome. Minsk : Dr. Design, 122 p. (in Russian)

4. Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. (2017) Dysbiosis and the immune system. Nat. Rev. Immunol., vol.17, no 4, pp.219–232. doi: 10.1038/nri.2017.7.

5. Li X., Liu L., Cao Z., Li W., Li H., Lu C., Yang X., Liu Y. (2020) Gut microbiota as an "invisible organ" that modulates the function of drugs. Biomed. Pharmacother., vol.121, 109653. doi: 10.1016/j.biopha.2019.109653.

6. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, vol.7, pp.14. doi: 10.3390/microorganisms7010014.

7. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. (2005) Diversity of the human intestinal microbial flora. Science, vol.308, pp.1635–1638. doi: 10.1126/science.1110591.

8. Shi N., Li Na., Duan X., Niu H. (2017) Interaction between the gut microbiome and mucosal immune system. Military Medical Research, vol.4, p.14. doi: 10.1186/s40779-017-0122-9/

9. Kelly J.R., Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G., Hyland N.P. (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol., vol.26, pp.326–333. doi: 10.1016/j.it.2005.04.008

10. Shahbazi R., Yasavoli-Sharahi H., Alsadi N., Ismail N., Matar C. (2020) Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecules, vol.25, no 21, p.4891. Available at: https://doi.org/10.3390/molecules25214891

11. Belizário J.E., Faintuch J., Garay-Malpartida M. (2018) Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Hindawi Mediators Inflammation, Article ID 2037838, 12 p. doi: 10.1155/2018/2037838

12. Palm N.W., de Zoete M.R., Flavell R.A. (2015) Immune-microbiota interactions in health and disease. Clin. Immunol., vol.159, no 2, pp 122–127. doi: 10.1016/j.clim.2015.05.014

13. Knoop K.A., Holtz L.R., Newberry R.D. (2018) Inherited nongenetic influences on the gut microbiome and immune system. Birth Defects Res., vol.110, no 20, pp.1494–1503. doi: 10.1002/bdr2.1436.

14. Johansson M.E.V., Ambort S., Pelaseyed T., Schütte A., Gustafsson J.K., Ermund A., Subramani D.B., Holmén-Larsson J.A., Thomsson K.A., Bergström J.H., van der Post S., Rodriguez-Piñeiro A.M, Sjövall H., Bäckström M., Hanssonet G.C. (2011) Composition and functional role of the mucus layers in the intestine. Cel. Mol. Life Sci., vol.68, no 22, pp.3635–3641. doi: 10.1007/s00018-011-0822-3.

15. Donia M.S., Cimermancic P., Schulze C.J., Wieland Brown L.C., Martin J., Mitreva M., Clardy J., Linington R.G., Fischbach M.A. (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, vol.158, no 6, pp.1402–1414. doi: 10.1016/j.cell.2014.08.032.

16. Childs C.E., Calder P.C., Miles E.A. (2019) Diet and immune function. Nutrients, vol.11, p.1933. doi: 10.3390/nu11081933

17. Ahluwalia B., Magnusson M.K., Öhman L. (2017) Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand. J. Gastroenterol., vol.52, no 11, pp.1185–1193. doi: 10.1080/00365521.2017.1349173.

18. Gaboriau-Routhiau V., Cerf-Bensussan N. (2016) Gut microbiota and development of the immune system. Med. Sci. (Paris), vol. 32, no 11, pp.961–967. doi: 10.1051/medsci/20163211011.

19. Cresci G.A. (2015) The gut microbiome: What we do and don’t know. Nutr. Clin. Pract., vol.30, no 6, pp.734–746. doi: 10.1177/0884533615609899.

20. Mowat A.M., Agace W.W. (2014) Regional specialization within the intestinal immune system. Nat. Rev. Immunol., vol. 14, pp. 667–685. doi: 10.1038/nri3738

21. Allaire J.M., Crowley S.M., Law H.T., Chang S.-Y., Ko H.-J., Vallance B.A. (2018) The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol., vol.39, no 9, pp.677–696. doi: 10.1016/j.it.2018.04.002.

22. Sichetti M., De Marco S., Pagiotti R., Traina G., Pietrella D. (2018) Anti-inflammatory effect of multistrain probiotic formulation (L. Rhamnosus, B. lactis, and B.l ongum). Nutrition, vol.53, pp.95–102, doi: 10.1016/j.nut.2018.02.005

23. Caricilli A.M., Castoldi A., Câmara N.O.S. (2014) Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J. Gastrointest. Pathophysiol., vol.5, no 1, pp.18–32. doi: 10.4291/wjgp.v5.i1.18.

24. Dong L., Xie J., Wang Y., Zuo D. (2020) Gut microbiota and immune responses. Adv. Exp. Med. Biol., vol.238, pp. 65–193. doi: 10.1007/978-981-15-2385-4_10.

25. Anand S., Mande S.S. (2018) Diet, microbiota and gut-lung connection. Front. Microbiol., vol.9, pp.2147. doi: 10.3389/fmicb.2018.02147.

26. El Aidy S., Dinan T.G., Cryan J.F. (2014) Immune modulation of the brain-gut-microbe axis. Front. Microbiol., vol. 5, pp. 146. doi: 10.3389/fmicb.2014.00146

27. Guillemard E., Tondu F., Lacoin F., Schrezenmeir J. (2010) Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr., vol.103, pp.58–68. doi: 10.1017/S0007114509991395.

28. Kataoka K. (2016) The intestinal microbiota and its role in human health and disease. J. Med. Invest., vol.63, no 1–2, pp.27–37. doi: 10.2152/jmi.63.27.

29. Turchet P., Laurenzano M., Auboiron S., Antoine J.M. (2003) Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. J. Nutr. Health Aging, vol.7, pp.75–77.

30. La Fata G., Weber P., Hasan Mohajeri M. (2018) Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Prot., vol.10, pp.11–21. doi: 10.1007/s12602-017

31. Weyh C., Krüger K., Strasser B. (2020) Physical activity and diet shape the immune system during aging. Nutrients, vol.20, no 12, p.622. doi: 10.3390/nu12030622

32. Instrukciya po medicinskomu primeneniyu preparata Lineks® Forte [Instructions for medical use of the drug Lineks® Forte]. Available at: https://www.rceth.by/NDfiles/instr/9405_10_11_15_16_19_20_i.pdf

33. Hao Q., Dong B.R., Wu T. (2015) Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev., vol.2, CD006895. doi: 10.1002/14651858.CD006895.pub3.

34. Parker E.A., Roy T., D’Adamo C.R., Wieland L.S. (2018) Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, vol.45, pp.125–134. doi: 10.1016/j.nut.2017.06.024

35. Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. (2019) Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., vol.74, pp.115–124. doi: 10.1159/000496426.

36. Mañé J., Pedrosa E., Lorén V., Gassull M.A., Espadaler J., Cuñé J., Audivert S., Bonachera M.A., Cabré E. (2011) A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp., vol.26, pp.228–235.

37. Luoto R., Ruuskanen O., Waris M., Kalliomaki M., Salminen S., Isolauri E. (2014) Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol., vol.133, pp.405–13. doi: 10.1016/j.jaci.2013.08.020

38. Waki N., Matsumoto M., Fukui Y., Suganuma H. (2014) Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol., vol.59, pp.565–571. doi: 10.1111/lam.12340

39. Namba K., Hatano M., Yaeshima T., Takase M., Suzuki K. (2010) Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol. Biochem., vol. 74, pp. 939–845. doi: 10.1271/bbb.90749

40. Turner R.B., Woodfolk J.A., Borish L., Steinke J.W., Patrie J.T., Muehling L.M. (2017) Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial. Benef. Microbes, vol.8, pp.207–215. doi: 10.3920/BM2016.0160

41. Baud D., Dimopoulou Agri V., Gibson G.R., Reid G., Giannoni E. (2020) Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health, 08 May. doi: 10.3389/fpubh.2020.00186

42. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Ter Horst R., Jansen T., Jacobs J., Jan Bonder M., KurilshikovA., Fu J., Joosten L.A.B., Zhernakova A., Huttenhower C., Wijmenga S., Netea M.G., Xavier R.J. (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell, vol.167, pp.1125–1136. doi: 10.1016/j.cell.2016.10.020.

43. Zeppa S.Z., Agostini D., Piccoli G., Stocchi V., Sestili P. (2020) Gut microbiota status in COVID-19: An unrecognized player? Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2020.576551

44. Aktas B., Aslim B. (2020) Gut-lung axis and dysbiosis in COVID-19. Turk. J. Biol., vol.44, pp.265–272. doi: 10.3906/biy-2005-102.

45. Segal J.P., Mak J.W.Y., Mullish B.H., Alexander J.L., Ng S.C., Marchesi J.R. (2020) The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Ther. Adv. Gastroenterol., vol.13, pp.1–14. doi: 10.1177/175628482097491

46. Yeoh Y.K., Zuo T., Lui G. C.-Y., Zhang F., Liu Q., Li A.Y., Chung A.C.K. Cheung C.P., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D. S.-C., Chow K.M., Ng S.S.S., Li T.C.-M., Ng R.W.Y., Yip T.C.F., Wong G.L., Chan F.K.L., Wong C.K., Chan P.K.S., Ng S.C. (2021) Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, vol. 70, no 4, pp. 698–706. doi: 10.1136/gutjnl-2020-323020. Epub 2021 Jan 11.

47. Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A.C.K., Cheung C.P., Chen N., Lai C.K.C., Chen Z., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D.S.C., Chan F.K.L., Chan P.K.S., Ng S.C. (2020) Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, vol.159, pp.944–955.

48. Villapol S. (2020) Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Translational Research, vol. 226, pp.57–69. doi: 10.1016/j.trsl.2020.08.004.

49. Vodnar D.-C., Teleky B.-E., Szabo K., Calinoiu L.-F., Nemes S.-A., Martau G.A. (2020) Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A real challenge for human gut microbiota. Front. Cell. Infect. Microbiol., 09 December. doi: 10.3389/fcimb.2020.575559

50. Gohil K., Samson R., Dastagerb S., Dharne M. (2021) Probiotics in the prophylaxis of COVID 19: something is better than nothing. Biotech, vol.11, p.1. doi: 10.1007/s13205-020-02554-1

51. Angurana S.K., Bansal A. (2020) Probiotics and COVID-19: Think about the link. Br. J. Nutr., Sep 14, pp.1–26. doi: 10.1017/S000711452000361

Recipe. 2021; : 323-331

The Gut Microbiota and Immunity

Silivontchik N.

https://doi.org/10.34883/PI.2021.24.3.002

Abstract

The gut microbiota consists of a dynamic multispecies community living within a particular niche in a mutual synergy with the host organism. Recent findings have revealed the roles for the gut microbiota in the modulation of host immunity and the development and progression of diseases. Nutritional modulation of the immune system has applications within the clinical setting, but can also have a role in healthy population. Probiotics are living microorganisms that, in specific conditions, confer a health benefit to the host. Among others, probiotics have immunomodulatory properties that act directly by increasing the activity of macrophages or natural killer cells, modulating the secretion of immunoglobulins or cytokines, or indirectly by enhancing the gut epithelial barrier, altering the mucus secretion, and competitively excluding other (pathogenic) bacteria.

References

1. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature, vol.86, pp.207–214. doi: 10.1038/nature11234.

2. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature, vol. 486, pp. 215–221. doi: 10.1038/nature11209.

3. Stoma I., Karpov I. (2018) The human microbiome. Minsk : Dr. Design, 122 p. (in Russian)

4. Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. (2017) Dysbiosis and the immune system. Nat. Rev. Immunol., vol.17, no 4, pp.219–232. doi: 10.1038/nri.2017.7.

5. Li X., Liu L., Cao Z., Li W., Li H., Lu C., Yang X., Liu Y. (2020) Gut microbiota as an "invisible organ" that modulates the function of drugs. Biomed. Pharmacother., vol.121, 109653. doi: 10.1016/j.biopha.2019.109653.

6. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, vol.7, pp.14. doi: 10.3390/microorganisms7010014.

7. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. (2005) Diversity of the human intestinal microbial flora. Science, vol.308, pp.1635–1638. doi: 10.1126/science.1110591.

8. Shi N., Li Na., Duan X., Niu H. (2017) Interaction between the gut microbiome and mucosal immune system. Military Medical Research, vol.4, p.14. doi: 10.1186/s40779-017-0122-9/

9. Kelly J.R., Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G., Hyland N.P. (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol., vol.26, pp.326–333. doi: 10.1016/j.it.2005.04.008

10. Shahbazi R., Yasavoli-Sharahi H., Alsadi N., Ismail N., Matar C. (2020) Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecules, vol.25, no 21, p.4891. Available at: https://doi.org/10.3390/molecules25214891

11. Belizário J.E., Faintuch J., Garay-Malpartida M. (2018) Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Hindawi Mediators Inflammation, Article ID 2037838, 12 p. doi: 10.1155/2018/2037838

12. Palm N.W., de Zoete M.R., Flavell R.A. (2015) Immune-microbiota interactions in health and disease. Clin. Immunol., vol.159, no 2, pp 122–127. doi: 10.1016/j.clim.2015.05.014

13. Knoop K.A., Holtz L.R., Newberry R.D. (2018) Inherited nongenetic influences on the gut microbiome and immune system. Birth Defects Res., vol.110, no 20, pp.1494–1503. doi: 10.1002/bdr2.1436.

14. Johansson M.E.V., Ambort S., Pelaseyed T., Schütte A., Gustafsson J.K., Ermund A., Subramani D.B., Holmén-Larsson J.A., Thomsson K.A., Bergström J.H., van der Post S., Rodriguez-Piñeiro A.M, Sjövall H., Bäckström M., Hanssonet G.C. (2011) Composition and functional role of the mucus layers in the intestine. Cel. Mol. Life Sci., vol.68, no 22, pp.3635–3641. doi: 10.1007/s00018-011-0822-3.

15. Donia M.S., Cimermancic P., Schulze C.J., Wieland Brown L.C., Martin J., Mitreva M., Clardy J., Linington R.G., Fischbach M.A. (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, vol.158, no 6, pp.1402–1414. doi: 10.1016/j.cell.2014.08.032.

16. Childs C.E., Calder P.C., Miles E.A. (2019) Diet and immune function. Nutrients, vol.11, p.1933. doi: 10.3390/nu11081933

17. Ahluwalia B., Magnusson M.K., Öhman L. (2017) Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand. J. Gastroenterol., vol.52, no 11, pp.1185–1193. doi: 10.1080/00365521.2017.1349173.

18. Gaboriau-Routhiau V., Cerf-Bensussan N. (2016) Gut microbiota and development of the immune system. Med. Sci. (Paris), vol. 32, no 11, pp.961–967. doi: 10.1051/medsci/20163211011.

19. Cresci G.A. (2015) The gut microbiome: What we do and don’t know. Nutr. Clin. Pract., vol.30, no 6, pp.734–746. doi: 10.1177/0884533615609899.

20. Mowat A.M., Agace W.W. (2014) Regional specialization within the intestinal immune system. Nat. Rev. Immunol., vol. 14, pp. 667–685. doi: 10.1038/nri3738

21. Allaire J.M., Crowley S.M., Law H.T., Chang S.-Y., Ko H.-J., Vallance B.A. (2018) The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol., vol.39, no 9, pp.677–696. doi: 10.1016/j.it.2018.04.002.

22. Sichetti M., De Marco S., Pagiotti R., Traina G., Pietrella D. (2018) Anti-inflammatory effect of multistrain probiotic formulation (L. Rhamnosus, B. lactis, and B.l ongum). Nutrition, vol.53, pp.95–102, doi: 10.1016/j.nut.2018.02.005

23. Caricilli A.M., Castoldi A., Câmara N.O.S. (2014) Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J. Gastrointest. Pathophysiol., vol.5, no 1, pp.18–32. doi: 10.4291/wjgp.v5.i1.18.

24. Dong L., Xie J., Wang Y., Zuo D. (2020) Gut microbiota and immune responses. Adv. Exp. Med. Biol., vol.238, pp. 65–193. doi: 10.1007/978-981-15-2385-4_10.

25. Anand S., Mande S.S. (2018) Diet, microbiota and gut-lung connection. Front. Microbiol., vol.9, pp.2147. doi: 10.3389/fmicb.2018.02147.

26. El Aidy S., Dinan T.G., Cryan J.F. (2014) Immune modulation of the brain-gut-microbe axis. Front. Microbiol., vol. 5, pp. 146. doi: 10.3389/fmicb.2014.00146

27. Guillemard E., Tondu F., Lacoin F., Schrezenmeir J. (2010) Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr., vol.103, pp.58–68. doi: 10.1017/S0007114509991395.

28. Kataoka K. (2016) The intestinal microbiota and its role in human health and disease. J. Med. Invest., vol.63, no 1–2, pp.27–37. doi: 10.2152/jmi.63.27.

29. Turchet P., Laurenzano M., Auboiron S., Antoine J.M. (2003) Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. J. Nutr. Health Aging, vol.7, pp.75–77.

30. La Fata G., Weber P., Hasan Mohajeri M. (2018) Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Prot., vol.10, pp.11–21. doi: 10.1007/s12602-017

31. Weyh C., Krüger K., Strasser B. (2020) Physical activity and diet shape the immune system during aging. Nutrients, vol.20, no 12, p.622. doi: 10.3390/nu12030622

32. Instrukciya po medicinskomu primeneniyu preparata Lineks® Forte [Instructions for medical use of the drug Lineks® Forte]. Available at: https://www.rceth.by/NDfiles/instr/9405_10_11_15_16_19_20_i.pdf

33. Hao Q., Dong B.R., Wu T. (2015) Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev., vol.2, CD006895. doi: 10.1002/14651858.CD006895.pub3.

34. Parker E.A., Roy T., D’Adamo C.R., Wieland L.S. (2018) Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, vol.45, pp.125–134. doi: 10.1016/j.nut.2017.06.024

35. Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. (2019) Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., vol.74, pp.115–124. doi: 10.1159/000496426.

36. Mañé J., Pedrosa E., Lorén V., Gassull M.A., Espadaler J., Cuñé J., Audivert S., Bonachera M.A., Cabré E. (2011) A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp., vol.26, pp.228–235.

37. Luoto R., Ruuskanen O., Waris M., Kalliomaki M., Salminen S., Isolauri E. (2014) Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol., vol.133, pp.405–13. doi: 10.1016/j.jaci.2013.08.020

38. Waki N., Matsumoto M., Fukui Y., Suganuma H. (2014) Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol., vol.59, pp.565–571. doi: 10.1111/lam.12340

39. Namba K., Hatano M., Yaeshima T., Takase M., Suzuki K. (2010) Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol. Biochem., vol. 74, pp. 939–845. doi: 10.1271/bbb.90749

40. Turner R.B., Woodfolk J.A., Borish L., Steinke J.W., Patrie J.T., Muehling L.M. (2017) Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial. Benef. Microbes, vol.8, pp.207–215. doi: 10.3920/BM2016.0160

41. Baud D., Dimopoulou Agri V., Gibson G.R., Reid G., Giannoni E. (2020) Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health, 08 May. doi: 10.3389/fpubh.2020.00186

42. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Ter Horst R., Jansen T., Jacobs J., Jan Bonder M., KurilshikovA., Fu J., Joosten L.A.B., Zhernakova A., Huttenhower C., Wijmenga S., Netea M.G., Xavier R.J. (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell, vol.167, pp.1125–1136. doi: 10.1016/j.cell.2016.10.020.

43. Zeppa S.Z., Agostini D., Piccoli G., Stocchi V., Sestili P. (2020) Gut microbiota status in COVID-19: An unrecognized player? Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2020.576551

44. Aktas B., Aslim B. (2020) Gut-lung axis and dysbiosis in COVID-19. Turk. J. Biol., vol.44, pp.265–272. doi: 10.3906/biy-2005-102.

45. Segal J.P., Mak J.W.Y., Mullish B.H., Alexander J.L., Ng S.C., Marchesi J.R. (2020) The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Ther. Adv. Gastroenterol., vol.13, pp.1–14. doi: 10.1177/175628482097491

46. Yeoh Y.K., Zuo T., Lui G. C.-Y., Zhang F., Liu Q., Li A.Y., Chung A.C.K. Cheung C.P., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D. S.-C., Chow K.M., Ng S.S.S., Li T.C.-M., Ng R.W.Y., Yip T.C.F., Wong G.L., Chan F.K.L., Wong C.K., Chan P.K.S., Ng S.C. (2021) Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, vol. 70, no 4, pp. 698–706. doi: 10.1136/gutjnl-2020-323020. Epub 2021 Jan 11.

47. Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A.C.K., Cheung C.P., Chen N., Lai C.K.C., Chen Z., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D.S.C., Chan F.K.L., Chan P.K.S., Ng S.C. (2020) Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, vol.159, pp.944–955.

48. Villapol S. (2020) Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Translational Research, vol. 226, pp.57–69. doi: 10.1016/j.trsl.2020.08.004.

49. Vodnar D.-C., Teleky B.-E., Szabo K., Calinoiu L.-F., Nemes S.-A., Martau G.A. (2020) Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A real challenge for human gut microbiota. Front. Cell. Infect. Microbiol., 09 December. doi: 10.3389/fcimb.2020.575559

50. Gohil K., Samson R., Dastagerb S., Dharne M. (2021) Probiotics in the prophylaxis of COVID 19: something is better than nothing. Biotech, vol.11, p.1. doi: 10.1007/s13205-020-02554-1

51. Angurana S.K., Bansal A. (2020) Probiotics and COVID-19: Think about the link. Br. J. Nutr., Sep 14, pp.1–26. doi: 10.1017/S000711452000361