Журналов:     Статей:        

Рецепт. 2020; : 856-862

Оценка структурных измененийв стенке большой подкожной вены под влиянием пены полидоканолакомнатной температуры и охлажденной

Шестак Н. Г., Янушко В. А., Рогов Ю. И., Климчук И. П.

https://doi.org/10.34883/PI.2020.23.6.006

Аннотация

Цель исследования: оценить особенности структурных изменений в стенке большой подкожной вены под влиянием 3%-й пены полидоканола разной температуры. Материалы и методы. Материалом исследования послужили фрагменты вен, забранные мини-инвазивным хирургическим путем после воздействия 3%-й пеной полидоканола комнатной температуры и охлажденной. Результаты. Показатели глубины повреждения стенки вены и процент отсутствия эндотелия после воздействия охлажденной пены полидоканола составили 276,9 (197,8; 297,8) µm и 79,3 (76,9; 80,4) % соответственно, в сравнении с пеной комнатной температуры – 166,3 (136,1;187,4) µm и 40,1 (36,3;42,25) %.Выводы. Охлажденная пена полидоканола оказывает более выраженное повреждающее действие на стенку вены в сравнении с пеной комнатной температуры.

Список литературы

1. Evans C.J. (1999) Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health, vol. 53, pp. 149–153.

2. Rabe E., Berboth G., Pannier F. (2016) Epidemiologie der chronischen Venenkrankheiten. Wien Med Wochenschr., vol. 166 (9–10), pp. 260–263.

3. Bogachev V. (2003) Fleboskleroziruyushchee lechenie varikoznoj bolezni ven nizhnih konechnostej s ispol’zovaniem tekhniki «foam-form» [Phlebosclerosing treatment of varicose veins of the lower extremities using the “foam-form” technique]. Angiologiya i sosudistaya hirurgiya, 2, pp. 81–85.

4. Cavezzi A., Frullini A. (1999) The role of sclerosing foam in ultrasound guided sclerotherapy of the saphenous veins of recurrent varicose veins: our personal experience. Aust N Z J Phlebol., vol. 3, pp. 49–50.

5. Rabe E. (2008) Efficacy and safety of great saphenous vein sclerotherapy using standardized polidocanol foam (ESAF): a randomised controlled multicentre clinical trial. Eur J Vasc Endovasc Surg., vol. 35 (2), pp. 238–245.

6. Shadid N.H., Sommer A. (2009) Praktische leidraad ‘Echogeleide foamsclerose van stamvarices’. Ned Tijdschr Geneeskd., vol. 153, p. 99.

7. Parsi K. (2015) Interaction of detergent sclerosants with cell membranes. Phlebology, vol. 30 (5), pp. 306–15.

8. Antyufeev A. (2008) Foam-form i klassicheskaya skleroterapiya. Est’ li raznica? [Foam-form and classic sclerotherapy. Is there a difference?].Flebologiya, 2, pp. 24–26.

9. Guex J.J. (2005) Foam sclerotherapy: An overview of use for primary venous insufficiency. Semin Vasc Surg., vol. 18 (1), pp. 25–29.

10. Dabbs E.B. (2018) Implication of foam sclerosant inactivation by human whole blood in a laboratory setting. Phlebology, vol. 33 (5), pp. 338–343.

11. Bai T., Jiang W., Fan Y. (2018) Influence of Syringe Volume on Foam Stability in Sclerotherapy for Varicose Vein Treatment. Dermatol Surg., vol. 44 (5), pp. 689–696.

12. McAree B. (2012) Comparative stability of sodium tetradecyl sulphate (STD) and polidocanol foam: impact on vein damage in an in-vitro model.Eur J Vasc Endovasc Surg., vol. 43 (6), pp. 721–7255.

13. Rabe E. (2014) European guidelines for sclerotherapy in chronic venous disorders. Phlebology, vol. 29 (6), pp. 338–354.

14. Lai S.W., Goldman M.P. (2008) Does the relative silicone content of different syringes affect the stability of foam in sclerotherapy? J Drugs Dermatol., vol. 7 (4), pp. 399–400.

15. Van Deurzen B. (2011) Polidocanol concentration and time affect the properties of foam used for sclerotherapy. Dermatol Surg., vol. 37 (10), pp. 1448–1455.

16. Valenzuela G.C. (2013) Foam sclerosants are more stable at lower temperatures. Eur J Vasc Endovasc Surg., vol. 46 (5), pp. 593–9.

17. Eklof B. (2004) Revision of the CEAP classification for chronic venous disorders: consensus statement. J. of Vasc. Surg., vol. 40, no 6, pp. 1248–1252.

Recipe. 2020; : 856-862

Assessment of Structural Changes in the Great Saphenous Vein Wall under the Influence of Room Temperature Polydocanol Foam and the Chilled On

Shestak N., Yanushko V., Rogov Y., Klimchuk I.

https://doi.org/10.34883/PI.2020.23.6.006

Abstract

Purpose. To evaluate the structural changes in the great saphenous vein wall under the influence of 3% polydocanol foam of different temperatures.Methods. The research is based on morphological evaluation of vein fragments that were removed with minimally invasive technique after sclerotherapy with the room temperature 3% polydocanol foam and the chilled one.Results. The depth of the venous wall damage and the percentage of endothelial cell loss after exposure to the chilled foam were 276.9 (197.8; 297.8) µm and 79.3 (76.9; 80.4) %. The similarparameters after the exposure to the room temperature foam were 166.3 (136.1; 187.4) µm and 40.1 (36.3; 42.25) %, respectively.Conclusion. The chilled polydocanol foam has a more pronounced damaging effect on the vein wall in comparison with the room temperature foam.
References

1. Evans C.J. (1999) Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health, vol. 53, pp. 149–153.

2. Rabe E., Berboth G., Pannier F. (2016) Epidemiologie der chronischen Venenkrankheiten. Wien Med Wochenschr., vol. 166 (9–10), pp. 260–263.

3. Bogachev V. (2003) Fleboskleroziruyushchee lechenie varikoznoj bolezni ven nizhnih konechnostej s ispol’zovaniem tekhniki «foam-form» [Phlebosclerosing treatment of varicose veins of the lower extremities using the “foam-form” technique]. Angiologiya i sosudistaya hirurgiya, 2, pp. 81–85.

4. Cavezzi A., Frullini A. (1999) The role of sclerosing foam in ultrasound guided sclerotherapy of the saphenous veins of recurrent varicose veins: our personal experience. Aust N Z J Phlebol., vol. 3, pp. 49–50.

5. Rabe E. (2008) Efficacy and safety of great saphenous vein sclerotherapy using standardized polidocanol foam (ESAF): a randomised controlled multicentre clinical trial. Eur J Vasc Endovasc Surg., vol. 35 (2), pp. 238–245.

6. Shadid N.H., Sommer A. (2009) Praktische leidraad ‘Echogeleide foamsclerose van stamvarices’. Ned Tijdschr Geneeskd., vol. 153, p. 99.

7. Parsi K. (2015) Interaction of detergent sclerosants with cell membranes. Phlebology, vol. 30 (5), pp. 306–15.

8. Antyufeev A. (2008) Foam-form i klassicheskaya skleroterapiya. Est’ li raznica? [Foam-form and classic sclerotherapy. Is there a difference?].Flebologiya, 2, pp. 24–26.

9. Guex J.J. (2005) Foam sclerotherapy: An overview of use for primary venous insufficiency. Semin Vasc Surg., vol. 18 (1), pp. 25–29.

10. Dabbs E.B. (2018) Implication of foam sclerosant inactivation by human whole blood in a laboratory setting. Phlebology, vol. 33 (5), pp. 338–343.

11. Bai T., Jiang W., Fan Y. (2018) Influence of Syringe Volume on Foam Stability in Sclerotherapy for Varicose Vein Treatment. Dermatol Surg., vol. 44 (5), pp. 689–696.

12. McAree B. (2012) Comparative stability of sodium tetradecyl sulphate (STD) and polidocanol foam: impact on vein damage in an in-vitro model.Eur J Vasc Endovasc Surg., vol. 43 (6), pp. 721–7255.

13. Rabe E. (2014) European guidelines for sclerotherapy in chronic venous disorders. Phlebology, vol. 29 (6), pp. 338–354.

14. Lai S.W., Goldman M.P. (2008) Does the relative silicone content of different syringes affect the stability of foam in sclerotherapy? J Drugs Dermatol., vol. 7 (4), pp. 399–400.

15. Van Deurzen B. (2011) Polidocanol concentration and time affect the properties of foam used for sclerotherapy. Dermatol Surg., vol. 37 (10), pp. 1448–1455.

16. Valenzuela G.C. (2013) Foam sclerosants are more stable at lower temperatures. Eur J Vasc Endovasc Surg., vol. 46 (5), pp. 593–9.

17. Eklof B. (2004) Revision of the CEAP classification for chronic venous disorders: consensus statement. J. of Vasc. Surg., vol. 40, no 6, pp. 1248–1252.