Журналов:     Статей:        

Рецепт. 2020; : 680-693

Энергетический коллапс при COVID-19: диагностика и лечение

Саливончик Д. П., Саливончик Е. И.

https://doi.org/10.34883/PI.2020.23.5.004

Аннотация

Самостоятельным диагностическим критерием для оценки прогноза у пациентов с COVID-19 является динамика уровня лактата, гиперпродукция которого обусловлена кризисом энергопродуцирующих систем и перегрузкой гликолитического пути образования энергии. Единственным корректором энергетического коллапса, вызванного COVID-19, является использование Тиотриазолина – метаболического препарата с множественными путями использования лактата и стимулирования окислительного фосфорилирования, мощными антиоксидантными свойствами. Такие препараты, как блокаторы метаболизма жирных кислот (триметазидин, мельдоний), в данной ситуации не имеют патогенетического и биохимического обоснования.

Список литературы

1. Xong T-Y. (2020) Coronaviruses and the cardiovascular system: acute and long-term implication. European Heart Journal, ehaa231. http// doi org/10.1093/eurheart/ehaaa231. Published: 18 March.

2. Li B. (2020) Prevalence and impact of cardiovascular metabolic Diseases on COVID-19 in China. Clin Res Cardiol., Mar 11. doi: 10.1007/s00392- 020-01626-9.

3. Severin E.S. (2008) Biologicheskaya himiya [Biological chemistry]. M.: OOO "Medicinskoe informacionnoe agentstvo", 364 p. (in Russian)

4. Valenza F. (2005) Lactat as a marker of energy failure in critically ill patients: hypothesis. Critical Care, vol. 5, no 6, pp. 588–593.

5. Poole R.C. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology, vol. 264, pp. 761–782.

6. Hashimoto T., Brooks G.A. (2008) Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc., Mar., vol. 40(3), pp. 486–94.7.

7. (2013) Eur Heart J., vol. 34, pp. 2949–3003. doi: 10.1093 / eurheartj/eht296.

8. Mazur I.A. (2005) Tiotriazolin. Zaporozh’e, 146 p. (in Russian)

9. Netyazhenko V.Z., Malchevskaya T.I. (2010) Vozmozhnosti metabolicheskoj terapii v lechenii ishemicheskoj bolezni serdca: opyt dvojnogo slepogo randomizirovannogo mul’ticentrovogo issledovaniya [Capabilities of metabolic therapy in treatment of ischemic heart disease: experience of double blind randomized multicenter trial]. Listapad, no 22 (251), pp. 1–5.

Recipe. 2020; : 680-693

Energy Collapse in COVID-19: Diagnostics and Treatment

Salivonchyk D., Salivonchyk E.

https://doi.org/10.34883/PI.2020.23.5.004

Abstract

An independent diagnostic criterion for assessing the prognosis in patients with COVID-19 is the dynamics of lactate level, the overproduction of which is caused by the crisis of energy-producing systems and the overload of the glycolytic pathway of energy production. The only corrector of the energy collapse caused by COVID-19 is the use of thiotriazoline, a metabolic drug with multiple pathways of lactate use and stimulation of oxidative phosphorylation, with powerful antioxidant properties. Such drugs as blockers of fatty acid metabolism (trimetazidine, meldonium) in this situation have no pathogenetic and biochemical substantiation.
References

1. Xong T-Y. (2020) Coronaviruses and the cardiovascular system: acute and long-term implication. European Heart Journal, ehaa231. http// doi org/10.1093/eurheart/ehaaa231. Published: 18 March.

2. Li B. (2020) Prevalence and impact of cardiovascular metabolic Diseases on COVID-19 in China. Clin Res Cardiol., Mar 11. doi: 10.1007/s00392- 020-01626-9.

3. Severin E.S. (2008) Biologicheskaya himiya [Biological chemistry]. M.: OOO "Medicinskoe informacionnoe agentstvo", 364 p. (in Russian)

4. Valenza F. (2005) Lactat as a marker of energy failure in critically ill patients: hypothesis. Critical Care, vol. 5, no 6, pp. 588–593.

5. Poole R.C. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology, vol. 264, pp. 761–782.

6. Hashimoto T., Brooks G.A. (2008) Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc., Mar., vol. 40(3), pp. 486–94.7.

7. (2013) Eur Heart J., vol. 34, pp. 2949–3003. doi: 10.1093 / eurheartj/eht296.

8. Mazur I.A. (2005) Tiotriazolin. Zaporozh’e, 146 p. (in Russian)

9. Netyazhenko V.Z., Malchevskaya T.I. (2010) Vozmozhnosti metabolicheskoj terapii v lechenii ishemicheskoj bolezni serdca: opyt dvojnogo slepogo randomizirovannogo mul’ticentrovogo issledovaniya [Capabilities of metabolic therapy in treatment of ischemic heart disease: experience of double blind randomized multicenter trial]. Listapad, no 22 (251), pp. 1–5.