Радиопромышленность. 2020; 30: 86-98
Обзор методов диагностики электронасосных агрегатов спутниковых платформ
Матвеев С. А., Жуков Ю. А., Коротков Е. Б., Широбоков О. В., Надежин М. И., Ладыгин А. П.
https://doi.org/10.21778/2413-9599-2020-30-3-86-98Аннотация
В статье дана краткая характеристика электронасосного агрегата системы терморегулирования спутниковой системы как электромеханической подсистемы. Рассмотрены общие вопросы разработки систем диагностики электромеханических систем. Определены дефекты частей системы и причины, приводящие к отказам электромеханических агрегатов. По современным источникам представлен обзор методов и подходов к решению задач диагностики дефектов механической, электрической и электромагнитной частей исследуемых систем. Отмечены достоинства и недостатки современных подходов. Показана диагностическая карта перспективной токовой диагностики. Дана оценка эффективности применения различных методов и практические рекомендации к применению представленных методов для проектирования систем диагностики электронасосных агрегатов спутниковых систем. Определены перспективные направления исследований в области диагностики электромеханических систем, такие как применение токовых методов или методов на основе нейросетей.
Список литературы
1. Носов В. В. Диагностика машин и оборудования. СПб.: Лань, 2017. 376 с.
2. Geitner F. K., Bloch H. P. Machinery Failure Analysis and Troubleshooting. Butterworth Heinemann, 2012. 743 p.
3. Гемке Р. Г. Неисправности электрических машин. Ленинград: Энергоатомиздат, 1989. 334 с.
4. Muenchhof M., Beck M., Isermann R. Fault-tolerant actuators and drives – Structures, fault detection principles and applications. Annual Reviews in Control, 2009, vol. 33, pp. 136–148.
5. Калинов А. П., Браташ О. В. Анализ методов вибродиагностики асинхронных двигателей // Известия высших учебных заведений и энергетических объединений СНГ. Энергетика. 2012. Т. 5. С. 43–51.
6. Alameh K., Cite N., Hoblos G., Barakat G. Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors. IFAC-PapersOnLine, 2015, vol. 48, iss. 21, pp. 1444–1450.
7. Han Q., Ding Z., Xu X., Wang T., Chu F. Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits. Mechanical Systems and Signal Processing, 2019, no. 131, pp. 554–575.
8. Corne B., Vervisch B., Derammelaere S., Knockaert J., Desmet J. The reflection of evolving bearing faults in the stator current’s extended park vector approach for induction machines. Mechanical Systems and Signal Processing, 2018, no. 107, pp. 168–182.
9. Диагностика подшипников качения фазохронометрическим методом / В.И. Пронякин, Е.А. Кудрявцев, А.С. Комшин, К.Г. Потапов // Известия высших учебных заведений. Машиностроение. 2017. № 3 (684). C. 48–55.
10. Подмастерьев К. В. Комплексное диагностирование подшипников и опор качения машин и механизмов на различных этапах их жизненного цикла // Известия ТулГУ. Технические науки. 2011. № 2 (5). C. 304-3014.
11. Подмастерьев К. В., Подмастерьев А. К. Электрорезистивный метод контроля процесса приработки подшипников качения // Приборы и методы измерений. 2015. № 1 (10). C. 47–55.
12. Павлов Б. В. Акустическая диагностика механизмов. М.: Машиностроение, 1974. 224 с.
13. Кирякин И. Л., Железная А. В. Акустическая диагностика узлов и блоков РЭА. М.: Радио и связь, 1984. 192 с.
14. Bovet C., Zamponi L. An approach for predicting the internal behaviour of ball bearings under high moment load. Mechanism and Machine Theory, 2016, vol. 101, pp. 1–22.
15. Системы виброзащиты, виброконтроля и вибродиагностики промышленного оборудования / Е.Н. Ишметьев, Д.В. Чистяков, А.Н. Панов, Е.Э. Бодров, М. Врабел // Электротехнические системы и комплексы. 2009. Т. 1. № 42. С. 67–73.
16. Вибрационно-импульсный метод оценки технического состояния подшипников качения. Расчет параметров ударных импульсов / С.Н. Поддубко, Н.Н. Ишин, А.М. Гоман, А.С. Скороходов, Ю.А. Дакало // Механика машин, механизмов и материалов. 2019. № 1 (46). С. 5–12.
17. Hongrui C., Fei S., Yamin L., Bijian L., Xuefeng C. Vibration and stability analysis of rotor-bearing-pedestal system due to clearance fit. Mechanical Systems and Signal Processing, 1019, no. 133.
18. Adams M. L. Rotating Machinery Vibration from Analysis to Troubleshooting. New York, Marcel Dekker Publ., 2000, 354 p.
19. Bulgakova A., Kruglova T. Intelligent Method for Fault Finding of Electric Drive Based on Wavelet Analysis of its Electrical and Mechanical Parameters. International Conference on Industrial Engineering, ICIE2017, 2017, vol. 206, pp. 929–935.
20. Silva A. A., Gupta S., Bazzi A. M., Ulatowski A. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships. ISA Transactions, 2018, vol. 78, pp. 105–115.
21. Наземная система комплексной диагностики электромеханических устройств космических аппаратов / Е.Б. Коротков, Н.С. Слободзян, О.В. Широбоков, А.А. Киселев, М.И. Надежин // Радиопромышленность. 2019. Т. 29, № 4. С. 54–62.
22. Патент на полезную модель RU193341. Система управления и диагностики электродвигателя / Е.Б. Коротков, В.О. Гончаров, Н.С. Слободзян. Заявлен 04.02.2019. Опубликован 24.10.2019.
23. Benbouzid M. E. H. A Review of Induction Motors Signature Analysis as a Medium for Faults Detection. IEEE transactions on industrial electronics, 2000, vol. 47, no. 5, pp. 984–993.
24. Enayet H. B., Choudhury S. M. A. A., Shah S. L., Zuo M. J. Fault Detection of Rotating Machinery from Bicoherence Analysis of Vibration Data. Fault Detection. Supervision and Safety of Technical Processes 2006, 2007, vol. 2, pp. 1348–1353.
25. Attoui I., Fergani N., Boutasseta N., Oudjani B., Deliou A. A new time–frequency method for identification and classification of ball bearing faults. Journal of Sound and Vibration, 2017, vol. 397, pp. 241–265.
26. Карандин О. В., Ивченко В. Д. Диагностика роторных машин на основе вейвлет-анализа и алгоритма дискриминантного базиса // Приборы. 2009. № 5 (227). С. 42–48.
27. Ambur R., Rinderknecht S. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators. Mechanical Systems and Signal Processing, 2018, no. 102, pp. 72–86.
28. Zou D., Zhao H., Liu G., Ta N., Rao Z. Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: Theory and experiment. Journal of Sound and Vibration, 2019, vol. 463.
29. Zi W., Caichao Z. A new model for analyzing the vibration behaviors of rotor-bearing system. Communications in Nonlinear Science and Numerical Simulation, 2020, vol. 83.
30. Gomez M. J., Castejon C., Garcia-Prada J. C. Crack detection in rotating shafts based on 3 × energy: Analytical and experimental analyses. Mechanism and Machine Theory, 2016, no. 96, pp. 94–106.
31. Genta G. Dynamics of Rotating Systems. New York, Springer-Verlag Publ., 2005, 660 p.
32. Патент на изобретение RU2546131 C2. Способ защиты синхронной электрической машины от витковых замыканий обмотки ротора / В.И. Полищук. Заявлен 19.06.2013, опубликован 10.04.2015.
33. Патент на изобретение RU2629708 C1. Способ диагностики витковых замыканий в обмотке ротора синхронного генератора / А.С. Глазырин, В.И. Полищук, В.В. Тимошкин. Заявлен 19.09.2016, опубликован 31.08.2017.
34. Wang N., Jiang D. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study. Mechanism and Machine Theory, 2018, no. 125, pp. 207–219.
35. Urrestya J. C., Ribab J. R., Romerala L. Application of the zero-sequence voltage component to detect stator winding interturn faults in PMSMs. Electric Power Systems Research, 2012, vol. 89, pp. 38–44.
36. Picot A., Obeid Z., Regnier J., Poignant S., Darnis O., Maussion P. Statistic-based spectral indicator for bearing fault detection in permanent-magnet synchronous machines using the stator current. Mechanical Systems and Signal Processing, 2014, vol. 46, pp. 424–441.
37. Ciprian H., Szabo L. Wavelet Analysis and Park’s Vector Based Condition Monitoring of Induction Machines. Journal of Computer Science and Control Systems, 2011, vol. 4, no. 2, pp. 35–38.
38. Matveev S. A., Korotkov E. B., Zhukov Y. A., Slobodzian N. S., Gorbunov A. V., Tanklevskiy L. T. Diagnostic and Monitoring System for Technical Condition of Electromechanical Section of Thermal Control Systems in Spacecraft. International Journal of Mathematical, Engineering and Management Sciences, 2020, no. 5 (1), pp. 181–192.
39. Singh G., Naikan N. A. Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mechanical Systems and Signal Processing, no. 110, pp. 333–348.
40. Chuang C., Wei Z., Zhifu W., Zhi L. The diagnosis method of stator winding faults in PMSMs based on SOM neural networks. In: The 8th International Conference on Applied Energy – ICAE2016, 2017, pp. 2295–2301.
41. Moosavi S., Djerdir A., Amirat Y., Khaburi D. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art. Journal of Magnetism and Magnetic Materials, 2015, vol. 391, pp. 203–212.
42. Waqar T., Demetgul M. Thermal analysis MLP neural network based fault diagnosis on worm gears. Measurement, 2016, vol. 86, pp. 56–66.
43. Sobie C., Freitas C., Nicolai M. Simulation-driven machine learning: Bearing fault classification. Mechanical Systems and Signal Processing, 2018, vol. 99, pp. 403–419.
44. Nyanteh Y., Srivastava S., Edrington C., Cartes D. A. Application of artificial intelligence to stator winding fault diagnosis in Permanent Magnet Synchronous Machines. Electric Power Systems Research, 2013, vol. 103, pp. 20–213.
45. Ma S., Chu F. Ensemble deep learning-based fault diagnosis of rotor bearing systems. Computers in Industry, 2019, no. 105, pp. 143–152.
Radio industry (Russia). 2020; 30: 86-98
Overview of diagnostic methods for electric pump units of satellite platforms
Matveev S. A., Zhukov Y. A., Korotkov E. B., Shirobokov O. V., Nadezhin M. I., Ladygin A. P.
https://doi.org/10.21778/2413-9599-2020-30-3-86-98Abstract
The article gives a brief description of the electric pump unit of the satellite thermal control system as an electromechanical subsystem. General issues of development of diagnostics systems for electromechanical systems are considered. Defects of system parts and the reasons leading to failures of electromechanical units are determined. Using modern sources, an overview of methods and approaches to solving problems of diagnosing defects in the mechanical, electrical, and electromagnetic parts of the systems under study is presented. The advantages and disadvantages of modern approaches are noted. A diagnostic chart of prospective current diagnostics is shown. The paper gives an effectiveness assessment of various methods and practical recommendations for the use of the presented methods for the diagnostics system design for electric pump units of satellite systems. Promising areas of research in the field of diagnostics of electromechanical systems, such as the use of current methods or methods based on neural networks, have been identified.
References
1. Nosov V. V. Diagnostika mashin i oborudovaniya. SPb.: Lan', 2017. 376 s.
2. Geitner F. K., Bloch H. P. Machinery Failure Analysis and Troubleshooting. Butterworth Heinemann, 2012. 743 p.
3. Gemke R. G. Neispravnosti elektricheskikh mashin. Leningrad: Energoatomizdat, 1989. 334 s.
4. Muenchhof M., Beck M., Isermann R. Fault-tolerant actuators and drives – Structures, fault detection principles and applications. Annual Reviews in Control, 2009, vol. 33, pp. 136–148.
5. Kalinov A. P., Bratash O. V. Analiz metodov vibrodiagnostiki asinkhronnykh dvigatelei // Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob\"edinenii SNG. Energetika. 2012. T. 5. S. 43–51.
6. Alameh K., Cite N., Hoblos G., Barakat G. Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors. IFAC-PapersOnLine, 2015, vol. 48, iss. 21, pp. 1444–1450.
7. Han Q., Ding Z., Xu X., Wang T., Chu F. Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits. Mechanical Systems and Signal Processing, 2019, no. 131, pp. 554–575.
8. Corne B., Vervisch B., Derammelaere S., Knockaert J., Desmet J. The reflection of evolving bearing faults in the stator current’s extended park vector approach for induction machines. Mechanical Systems and Signal Processing, 2018, no. 107, pp. 168–182.
9. Diagnostika podshipnikov kacheniya fazokhronometricheskim metodom / V.I. Pronyakin, E.A. Kudryavtsev, A.S. Komshin, K.G. Potapov // Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie. 2017. № 3 (684). C. 48–55.
10. Podmaster'ev K. V. Kompleksnoe diagnostirovanie podshipnikov i opor kacheniya mashin i mekhanizmov na razlichnykh etapakh ikh zhiznennogo tsikla // Izvestiya TulGU. Tekhnicheskie nauki. 2011. № 2 (5). C. 304-3014.
11. Podmaster'ev K. V., Podmaster'ev A. K. Elektrorezistivnyi metod kontrolya protsessa prirabotki podshipnikov kacheniya // Pribory i metody izmerenii. 2015. № 1 (10). C. 47–55.
12. Pavlov B. V. Akusticheskaya diagnostika mekhanizmov. M.: Mashinostroenie, 1974. 224 s.
13. Kiryakin I. L., Zheleznaya A. V. Akusticheskaya diagnostika uzlov i blokov REA. M.: Radio i svyaz', 1984. 192 s.
14. Bovet C., Zamponi L. An approach for predicting the internal behaviour of ball bearings under high moment load. Mechanism and Machine Theory, 2016, vol. 101, pp. 1–22.
15. Sistemy vibrozashchity, vibrokontrolya i vibrodiagnostiki promyshlennogo oborudovaniya / E.N. Ishmet'ev, D.V. Chistyakov, A.N. Panov, E.E. Bodrov, M. Vrabel // Elektrotekhnicheskie sistemy i kompleksy. 2009. T. 1. № 42. S. 67–73.
16. Vibratsionno-impul'snyi metod otsenki tekhnicheskogo sostoyaniya podshipnikov kacheniya. Raschet parametrov udarnykh impul'sov / S.N. Poddubko, N.N. Ishin, A.M. Goman, A.S. Skorokhodov, Yu.A. Dakalo // Mekhanika mashin, mekhanizmov i materialov. 2019. № 1 (46). S. 5–12.
17. Hongrui C., Fei S., Yamin L., Bijian L., Xuefeng C. Vibration and stability analysis of rotor-bearing-pedestal system due to clearance fit. Mechanical Systems and Signal Processing, 1019, no. 133.
18. Adams M. L. Rotating Machinery Vibration from Analysis to Troubleshooting. New York, Marcel Dekker Publ., 2000, 354 p.
19. Bulgakova A., Kruglova T. Intelligent Method for Fault Finding of Electric Drive Based on Wavelet Analysis of its Electrical and Mechanical Parameters. International Conference on Industrial Engineering, ICIE2017, 2017, vol. 206, pp. 929–935.
20. Silva A. A., Gupta S., Bazzi A. M., Ulatowski A. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships. ISA Transactions, 2018, vol. 78, pp. 105–115.
21. Nazemnaya sistema kompleksnoi diagnostiki elektromekhanicheskikh ustroistv kosmicheskikh apparatov / E.B. Korotkov, N.S. Slobodzyan, O.V. Shirobokov, A.A. Kiselev, M.I. Nadezhin // Radiopromyshlennost'. 2019. T. 29, № 4. S. 54–62.
22. Patent na poleznuyu model' RU193341. Sistema upravleniya i diagnostiki elektrodvigatelya / E.B. Korotkov, V.O. Goncharov, N.S. Slobodzyan. Zayavlen 04.02.2019. Opublikovan 24.10.2019.
23. Benbouzid M. E. H. A Review of Induction Motors Signature Analysis as a Medium for Faults Detection. IEEE transactions on industrial electronics, 2000, vol. 47, no. 5, pp. 984–993.
24. Enayet H. B., Choudhury S. M. A. A., Shah S. L., Zuo M. J. Fault Detection of Rotating Machinery from Bicoherence Analysis of Vibration Data. Fault Detection. Supervision and Safety of Technical Processes 2006, 2007, vol. 2, pp. 1348–1353.
25. Attoui I., Fergani N., Boutasseta N., Oudjani B., Deliou A. A new time–frequency method for identification and classification of ball bearing faults. Journal of Sound and Vibration, 2017, vol. 397, pp. 241–265.
26. Karandin O. V., Ivchenko V. D. Diagnostika rotornykh mashin na osnove veivlet-analiza i algoritma diskriminantnogo bazisa // Pribory. 2009. № 5 (227). S. 42–48.
27. Ambur R., Rinderknecht S. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators. Mechanical Systems and Signal Processing, 2018, no. 102, pp. 72–86.
28. Zou D., Zhao H., Liu G., Ta N., Rao Z. Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: Theory and experiment. Journal of Sound and Vibration, 2019, vol. 463.
29. Zi W., Caichao Z. A new model for analyzing the vibration behaviors of rotor-bearing system. Communications in Nonlinear Science and Numerical Simulation, 2020, vol. 83.
30. Gomez M. J., Castejon C., Garcia-Prada J. C. Crack detection in rotating shafts based on 3 × energy: Analytical and experimental analyses. Mechanism and Machine Theory, 2016, no. 96, pp. 94–106.
31. Genta G. Dynamics of Rotating Systems. New York, Springer-Verlag Publ., 2005, 660 p.
32. Patent na izobretenie RU2546131 C2. Sposob zashchity sinkhronnoi elektricheskoi mashiny ot vitkovykh zamykanii obmotki rotora / V.I. Polishchuk. Zayavlen 19.06.2013, opublikovan 10.04.2015.
33. Patent na izobretenie RU2629708 C1. Sposob diagnostiki vitkovykh zamykanii v obmotke rotora sinkhronnogo generatora / A.S. Glazyrin, V.I. Polishchuk, V.V. Timoshkin. Zayavlen 19.09.2016, opublikovan 31.08.2017.
34. Wang N., Jiang D. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study. Mechanism and Machine Theory, 2018, no. 125, pp. 207–219.
35. Urrestya J. C., Ribab J. R., Romerala L. Application of the zero-sequence voltage component to detect stator winding interturn faults in PMSMs. Electric Power Systems Research, 2012, vol. 89, pp. 38–44.
36. Picot A., Obeid Z., Regnier J., Poignant S., Darnis O., Maussion P. Statistic-based spectral indicator for bearing fault detection in permanent-magnet synchronous machines using the stator current. Mechanical Systems and Signal Processing, 2014, vol. 46, pp. 424–441.
37. Ciprian H., Szabo L. Wavelet Analysis and Park’s Vector Based Condition Monitoring of Induction Machines. Journal of Computer Science and Control Systems, 2011, vol. 4, no. 2, pp. 35–38.
38. Matveev S. A., Korotkov E. B., Zhukov Y. A., Slobodzian N. S., Gorbunov A. V., Tanklevskiy L. T. Diagnostic and Monitoring System for Technical Condition of Electromechanical Section of Thermal Control Systems in Spacecraft. International Journal of Mathematical, Engineering and Management Sciences, 2020, no. 5 (1), pp. 181–192.
39. Singh G., Naikan N. A. Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mechanical Systems and Signal Processing, no. 110, pp. 333–348.
40. Chuang C., Wei Z., Zhifu W., Zhi L. The diagnosis method of stator winding faults in PMSMs based on SOM neural networks. In: The 8th International Conference on Applied Energy – ICAE2016, 2017, pp. 2295–2301.
41. Moosavi S., Djerdir A., Amirat Y., Khaburi D. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art. Journal of Magnetism and Magnetic Materials, 2015, vol. 391, pp. 203–212.
42. Waqar T., Demetgul M. Thermal analysis MLP neural network based fault diagnosis on worm gears. Measurement, 2016, vol. 86, pp. 56–66.
43. Sobie C., Freitas C., Nicolai M. Simulation-driven machine learning: Bearing fault classification. Mechanical Systems and Signal Processing, 2018, vol. 99, pp. 403–419.
44. Nyanteh Y., Srivastava S., Edrington C., Cartes D. A. Application of artificial intelligence to stator winding fault diagnosis in Permanent Magnet Synchronous Machines. Electric Power Systems Research, 2013, vol. 103, pp. 20–213.
45. Ma S., Chu F. Ensemble deep learning-based fault diagnosis of rotor bearing systems. Computers in Industry, 2019, no. 105, pp. 143–152.
События
-
К платформе Elpub присоединился журнал «Eurasian Journal of Economic and Business Studies» >>>
5 ноя 2025 | 08:43 -
Журнал «Весці Нацыянальнай акадэміі навук Беларусі: Серыя фізіка-тэхнічных наву» принят в DOAJ >>>
5 ноя 2025 | 08:42 -
Журнал «Ученые записки Российской академии предпринимательства» принят в DOAJ >>>
5 ноя 2025 | 08:41 -
Журнал «Биотехнология и селекция растений» принят в Scopus >>>
31 окт 2025 | 08:39 -
Научный периодический электронный рецензируемый студенческий журнал «Scientia Juvenum» теперь на Elpub >>>
30 окт 2025 | 12:58
