Журналов:     Статей:        

Альманах клинической медицины. 2018; 46: 784-791

Возрастная динамика продукции короткоцепочечных жирных кислот микробиотой ротоглотки у пациентов, не имеющих заболеваний респираторного тракта и ротовой полости

Затевалов А. М., Селькова Е. П., Гудова Н. В., Оганесян А. С.

https://doi.org/10.18786/2072-0505-2018-46-8-784-791

Аннотация

Актуальность. Функциональная активность микробиоты верхних дыхательных путей и ротовой полости имеет высокий информативный потенциал для диагностики инфекционных заболеваний и разработки профилактических мероприятий, что обусловлено быстрой изменчивостью и высокой активностью бактерий локуса.

Цель – определение статистических характеристик концентраций и соотношений короткоцепочечных жирных кислот (КЖК) ротоглотки (функциональной активности микробиоты ротоглотки) в зависимости от возраста у пациентов, не имеющих инфекционных заболеваний верхних дыхательных путей и ротовой полости.

Материал и методы. Методом газожидкостной хроматографии исследованы концентрации КЖК в слюне 683 пациентов в возрасте от 1 месяца до 85 лет, не имеющих инфекционных заболеваний респираторного тракта и ротовой полости. Возрастные интервалы с однородными значениями показателей КЖК в слюне были определены путем выявления постоянных тенденций средних (медианных) значений с точностью до месяца. Полученные выборки показателей для определенных временных интервалов сравнивали по критерию Манна – Уитни для порога значимости 95% (p < 0,05).

Результаты. Не было выявлено статистически значимых различий медианы суммарной концентрации КЖК (8,04 (интерквартильный размах 4,85–14,22) ммоль/г) и уксусной кислоты (6,27 (3,79–11,21) ммоль/г) в слюне для всех возрастов от 1 месяца до 85 лет. Для других показателей регистрировались 2–3 этапа изменений, происходивших в возрасте 4 месяцев и 14 лет. По достижению 14 лет концентрации пропионовой и масляной кислот статистически значимо увеличивались, а валериановой, капроновой, а также КЖК с разветвленной цепью – снижались. Соответственно, после 14 лет среднее значение структурного индекса увеличивалось с 0,25 до 0,27 ед. (p < 0,05). Значение индекса изокислот с возрастом снижалось, изменяясь в 2 этапа: в 4 месяца с 1,89 до 1,04 ед. (p < 0,05) и далее в 14 лет до 0,74 ед. (p < 0,05).

Заключение. Стабилизация концентраций КЖК в слюне происходит по достижении 14 лет. Структурный индекс и индекс изокислот являются наиболее чувствительными к интегральному изменению структуры микробиоты. При анализе данных исследования метаболической функции микрофлоры следует использовать аппарат математического моделирования и многомерной статистики в трех возрастных интервалах: с рождения до 4 месяцев, от 4 месяцев до 14 лет, от 14 лет и старше.

Список литературы

1. Алешкин ВА, Афанасьев СС, Караулова АВ, ред. Микробиоценозы и здоровье человека: руководство для врачей. М.: Династия; 2015. 548 с.

2. Медведева ЕА, Мескина ЕР. Метаболическая активность микрофлоры ротоглотки у детей с бронхитом и внебольничной пневмонией. Альманах клинической медицины. 2015;42:72–8. doi: 10.18786/2072-0505-201542-72-78.

3. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defning the healthy "core microbiome" of oral microbial communities. BMC Microbiol. 2009;9:259. doi: 10.1186/1471-2180-9-259.

4. Xian P, Xuedong Z, Xin X, Yuqing L, Yan L, Jiyao L, Xiaoquan S, Shi H, Jian X, Ga L. The oral microbiome bank of China. Int J Oral Sci. 2018;10(2):16. doi: 10.1038/s41368-0180018-x.

5. Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One. 2013;8(5):e63139. doi: 10.1371/journal.pone.0063139.

6. Berni Canani R, De Filippis F, Nocerino R, Laiola M, Paparo L, Calignano A, De Caro C, Coretti L, Chiariotti L, Gilbert JA, Ercolini D. Specifc signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow's milk containing heat-killed Lactobacillus paracasei CBA L74. Appl Environ Microbiol. 2017;83(19). pii: e01206–17. doi: 10.1128/AEM.01206-17.

7. Bozzetto S, Pirillo P, Carraro S, Berardi M, Cesca L, Stocchero M, Giordano G, Zanconato S, Baraldi E. Metabolomic profle of children with recurrent respiratory infections. Pharmacol Res. 2017;115:162–7. doi: 10.1016/j.phrs.2016.11.007.

8. Shirasugi M, Nishioka K, Yamamoto T, Nakaya T, Kanamura N. Normal human gingival fbroblasts undergo cytostasis and apoptosis after long-term exposure to butyric acid. Biochem Biophys Res Commun. 2017;482(4):1122–8. doi: 10.1016/j.bbrc.2016.11.168.

9. Jenkinson HF. Beyond the oral microbiome. Environ Microbiol. 2011;13(12):3077–87. doi: 10.1111/j.1462-2920.2011.02573.x.

10. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7. doi: 10.1136/gutjnl-2016-312580.

11. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–14. doi: 10.1128/mBio.01012-14.

12. Lohavanichbutr P, Zhang Y, Wang P, Gu H, Nagana Gowda GA, Djukovic D, Buas MF, Raftery D, Chen C. Salivary metabolite profling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS One. 2018;13(9):e0204249. doi: 10.1371/journal.pone.0204249.

13. Ohshima M, Sugahara K, Kasahara K, Katakura A. Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol Rep. 2017;37(5):2727–34. doi: 10.3892/or.2017.5561.

14. Huang CB, Alimova Y, Myers TM, Ebersole JL. Shortand medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol. 2011;56(7):650–4. doi: 10.1016/j.archoralbio.2011.01.011.

15. Алешкин ВА, Ардатская МД, Бабин ВН, Дубинин АВ, Иконников НС, Кондракова ОА, Минушкин ОН, авторы; НИФ «Ультрасан», заявитель и патентообладатель. Способ разделения смеси жирных кислот фракции С 2–С7 методом газожидкостной хроматографии. Пат. 2145511 Рос. Федерация. Опубл. 20.02.2000.

16. Алешкин ВА, Селькова ЕП, Затевалов АМ, Миронов АЮ, Волчецкий АЛ, Гудова НВ. Определение дисбиотических изменений желудочно-кишечного тракта по маркерам содержимого кишечника. Федеральные клинические рекомендации. Нижний Новгород: Ремедиум Приволжье; 2016. 40 с.

17. Алешкин ВА, Галимзянов ХМ, Афанасьев СС, Караулов АВ, Рубальский ОВ, Несвижский ЮВ, Воропаева ЕА, Афанасьев МС. Нарушения микробиоценозов у детей: Многоцентровое исследование. Cообщение I. Микробиоценоз и дисбактериоз ротоглотки у детей. Астраханский медицинский журнал. 2010;5(3):9–13.

18. Анурова АЕ, Величко ЭВ, Косырева ТФ, Стуров НВ. Влияние микрофлоры полости рта матерей на формирование микробиоценоза полости рта у детей с врожденными расщелинами верхней губы и нёба. Трудный пациент. 2017;15(1–2):59–63.

19. Затевалов АМ, Селькова ЕП, Гудова НВ, Оганесян АС. Возрастная динамика продукции короткоцепочечных жирных кислот кишечной микробиотой у пациентов, не имеющих гастроэнтерологических заболеваний. Альманах клинической медицины. 2018;46(2): 109–17. doi: 10.18786/2072-0505-2018-46-2109-117.

20. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi: 10.1186/1471-2180-9-123

Almanac of Clinical Medicine. 2018; 46: 784-791

Age-related changes in production of short chain fatty acids by oropharyngeal microbiota in patients without respiratory tract and oral disorders

Zatevalov A. M., Selkova E. P., Gudova N. V., Oganesyan A. S.

https://doi.org/10.18786/2072-0505-2018-46-8-784-791

Abstract

Rationale: Functional activity of upper respiratory tract and oral microbiota has a high informational potential for diagnostics of infectious disease and for development of preventive measure, which is to be explained by rapid variability and high activity of bacteria in this location.

Aim: To determine statistical characteristics of concentrations and ratios of the oropharyngeal short chain fatty acids (SCFA) (i.e., functional activity of oropharyngeal microbiota) depending on age of patients without infectious disorder of upper respiratory tract and oral cavity.

Materials and methods: Gas liquid chromatography was used to measure SCFA concentrations in saliva from 683 patients aged from 1 month to 85 years who did not have any infections of respiratory tract and oral cavity. Age intervals with homogenous salivary SCFA levels were determined with constant trends in their means (medians) with one-month accuracy. The resulting parameters for the identified age intervals were compared with Mann-Whitney test at 95% significance level (p < 0.05).

Results: There were no significant differences between median total SCFA levels (8.04 [4.85; 14.22] mmol/G) and median acetic acid levels (6.27 [3.79; 11.21] mmol/G) in saliva from patients of all ages from 1 month to 85 years. For all other parameters, from 2 to 3 steps of changes were found that occurred at the age of 4 months and 14 years. After the age of 14, the concentrations of propionic and butyric acid significantly increased, whereas those of valeric and caproic acids, as well as of the branched chain SCFA decreased. Correspondingly, after the age of 14, the mean structural index increased from 0.25 to 0.27 U (p < 0.05). The isoacid index decreased with age in two steps: at the age of 4 months from 1.89 to 1.04 U (p < 0.05) and later at the age of 14 years to 0.74 U (p < 0.05).

Conclusion: Salivary SCFA levels become stable at the age of 14. The structural index and the isoacid index are most sensitive to the integral changes in the microbiota composition. Analysis of the results of studies on metabolic functioning of microflora should be based on mathematic modeling and multifactorial statistics in three age intervals: from birth to 4 months of age, from 4 months to 14 years and over 14 years.
References

1. Aleshkin VA, Afanas'ev SS, Karaulova AV, red. Mikrobiotsenozy i zdorov'e cheloveka: rukovodstvo dlya vrachei. M.: Dinastiya; 2015. 548 s.

2. Medvedeva EA, Meskina ER. Metabolicheskaya aktivnost' mikroflory rotoglotki u detei s bronkhitom i vnebol'nichnoi pnevmoniei. Al'manakh klinicheskoi meditsiny. 2015;42:72–8. doi: 10.18786/2072-0505-201542-72-78.

3. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defning the healthy "core microbiome" of oral microbial communities. BMC Microbiol. 2009;9:259. doi: 10.1186/1471-2180-9-259.

4. Xian P, Xuedong Z, Xin X, Yuqing L, Yan L, Jiyao L, Xiaoquan S, Shi H, Jian X, Ga L. The oral microbiome bank of China. Int J Oral Sci. 2018;10(2):16. doi: 10.1038/s41368-0180018-x.

5. Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One. 2013;8(5):e63139. doi: 10.1371/journal.pone.0063139.

6. Berni Canani R, De Filippis F, Nocerino R, Laiola M, Paparo L, Calignano A, De Caro C, Coretti L, Chiariotti L, Gilbert JA, Ercolini D. Specifc signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow's milk containing heat-killed Lactobacillus paracasei CBA L74. Appl Environ Microbiol. 2017;83(19). pii: e01206–17. doi: 10.1128/AEM.01206-17.

7. Bozzetto S, Pirillo P, Carraro S, Berardi M, Cesca L, Stocchero M, Giordano G, Zanconato S, Baraldi E. Metabolomic profle of children with recurrent respiratory infections. Pharmacol Res. 2017;115:162–7. doi: 10.1016/j.phrs.2016.11.007.

8. Shirasugi M, Nishioka K, Yamamoto T, Nakaya T, Kanamura N. Normal human gingival fbroblasts undergo cytostasis and apoptosis after long-term exposure to butyric acid. Biochem Biophys Res Commun. 2017;482(4):1122–8. doi: 10.1016/j.bbrc.2016.11.168.

9. Jenkinson HF. Beyond the oral microbiome. Environ Microbiol. 2011;13(12):3077–87. doi: 10.1111/j.1462-2920.2011.02573.x.

10. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7. doi: 10.1136/gutjnl-2016-312580.

11. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–14. doi: 10.1128/mBio.01012-14.

12. Lohavanichbutr P, Zhang Y, Wang P, Gu H, Nagana Gowda GA, Djukovic D, Buas MF, Raftery D, Chen C. Salivary metabolite profling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS One. 2018;13(9):e0204249. doi: 10.1371/journal.pone.0204249.

13. Ohshima M, Sugahara K, Kasahara K, Katakura A. Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol Rep. 2017;37(5):2727–34. doi: 10.3892/or.2017.5561.

14. Huang CB, Alimova Y, Myers TM, Ebersole JL. Shortand medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol. 2011;56(7):650–4. doi: 10.1016/j.archoralbio.2011.01.011.

15. Aleshkin VA, Ardatskaya MD, Babin VN, Dubinin AV, Ikonnikov NS, Kondrakova OA, Minushkin ON, avtory; NIF «Ul'trasan», zayavitel' i patentoobladatel'. Sposob razdeleniya smesi zhirnykh kislot fraktsii S 2–S7 metodom gazozhidkostnoi khromatografii. Pat. 2145511 Ros. Federatsiya. Opubl. 20.02.2000.

16. Aleshkin VA, Sel'kova EP, Zatevalov AM, Mironov AYu, Volchetskii AL, Gudova NV. Opredelenie disbioticheskikh izmenenii zheludochno-kishechnogo trakta po markeram soderzhimogo kishechnika. Federal'nye klinicheskie rekomendatsii. Nizhnii Novgorod: Remedium Privolzh'e; 2016. 40 s.

17. Aleshkin VA, Galimzyanov KhM, Afanas'ev SS, Karaulov AV, Rubal'skii OV, Nesvizhskii YuV, Voropaeva EA, Afanas'ev MS. Narusheniya mikrobiotsenozov u detei: Mnogotsentrovoe issledovanie. Coobshchenie I. Mikrobiotsenoz i disbakterioz rotoglotki u detei. Astrakhanskii meditsinskii zhurnal. 2010;5(3):9–13.

18. Anurova AE, Velichko EV, Kosyreva TF, Sturov NV. Vliyanie mikroflory polosti rta materei na formirovanie mikrobiotsenoza polosti rta u detei s vrozhdennymi rasshchelinami verkhnei guby i neba. Trudnyi patsient. 2017;15(1–2):59–63.

19. Zatevalov AM, Sel'kova EP, Gudova NV, Oganesyan AS. Vozrastnaya dinamika produktsii korotkotsepochechnykh zhirnykh kislot kishechnoi mikrobiotoi u patsientov, ne imeyushchikh gastroenterologicheskikh zabolevanii. Al'manakh klinicheskoi meditsiny. 2018;46(2): 109–17. doi: 10.18786/2072-0505-2018-46-2109-117.

20. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi: 10.1186/1471-2180-9-123