Журналов:     Статей:        

Альманах клинической медицины. 2017; 45: 109-117

Оценка фенотипа интерфазных ядер лимфоцитов методом количественного фазового имиджинга (QPI) у пациенток с эндометриоидными кистами яичников

Гаспарян С. А., Попова О. С., Василенко И. А., Хрипунова А. А., Метелин В. Б.

https://doi.org/10.18786/2072-0505-2017-45-2-109-117

Аннотация

Актуальность. Эндометриоз яичников – прогрессирующее заболевание, распространенность и тяжесть которого неуклонно возрастают. В связи с этим представляются актуальными вопросы разработки надежных неинвазивных скрининговых методов лабораторной диагностики заболевания на этапе раннего амбулаторного обследования. Цель – оценка возможностей метода количественного фазового имиджинга для ранней диагностики эндометриоидных кист яичников и рецидивов заболевания в послеоперационном периоде. Материал и методы. Проанализированы 1578 ядер лимфоцитов периферической крови 82 пациенток с эндометриоидными кистами яичников в возрасте от 21 до 37 лет (средний возраст 26,4 ± 3,6 года), наблюдавшихся в женской консультации (г. Ессентуки). Исследования проводили в динамике: до лапароскопической цистэктомии, через 6 и 12 месяцев послеоперационного периода на фоне или без лечения препаратами с действующим веществом диеногест. Морфофункциональное состояние ядер лимфоцитов периферической крови оценивали в режиме реального времени методом количественного фазового имиджинга (QPI) с использованием модуля фазово-интерференционной микроскопии аппаратно-программного комплекса «Биони» (ООО «Весттрейд», Москва) для клинической и лабораторной диагностики, а также технологии морфоденситометрической сегментации. Результаты. При сравнительном анализе морфометрических показателей CD3+-клеток периферической крови соматически здоровых небеременных женщин и пациенток с эндометриоидными кистами яичников до проведения им оперативного лечения выявлено статистически значимое повышение расчетного показателя функциональной активности ядер лимфоцитов (0,898 против 0,783, p < 0,05). Исследование динамики дифференциально-диагностических критериев реактивных изменений ядер лимфоцитов периферической крови пациенток с эндометриоидными кистами яичников показало: по сравнению с результатами до лечения на 6-м и 12-м месяцах послеоперационного периода величина относительной интенсивности сегментов в ядрах (ΔI) снижалась на 10,3 и 14,7, 10,6 и 12,9% в группах, получавших терапию диеногестом, и без терапии диеногестом соответственно; относительное расстояние между центрами сегментов ядер (ΔL) имело тенденцию к увеличению на 0,6 и 0,9, 4,2 и 2,1%; количество сегментов в ядрах увеличивалось на 18,3 и 13,4, 27,4 и 16,9%; периметр ядер уменьшался на 13,9 и 12,6, 11,9 и 7,8% соответственно. Частота безрецидивных случаев через 6 и 12 месяцев наблюдения в группах больных, получавших диеногест, составила 100%, тогда как у пациенток, не получавших лечение диеногестом, – 97,5 и 93,5% соответственно. Обсуждение. Интерфазный хроматин представляет собой своеобразный биосенсор, датчик ранних изменений лимфоидной клетки. Модификации его структуры и плотности упаковки не только свидетельствуют об изменении морфофункционального состояния лимфоцита, но и могут быть спроецированы на организм в целом для ранней доклинической диагностики, оценки тяжести патологического процесса и прогноза при различных кризисных состояниях. Заключение. Практическое использование QPI в клиническом мониторинге больных с эндометриоидными кистами яичников способствует оперативному получению важной информации о состоянии клеточного звена иммунитета, открывает новые возможности для оценки эффективности проводимых лечебных и реабилитационных мероприятий, а также ранней доклинической диагностики рецидива заболевания.

Список литературы

1. .Адамян ЛВ, Азнаурова ЯБ. Молекулярные аспекты патогенеза эндометриоза. Проблемы репродукции. 2015;21(2):66–77. doi:10.17116/repro201521266-77.

2. Дубинская ЕД, Дутов АА, Лаптева НВ, Бабичева ИА, Колесникова СН. Эндометриоидные кисты яичников и фертильность: дискуссионные аспекты. Вопросы гинекологии, акушерства и перинатологии. 2015;14(5): 27–35.

3. Jerman LF, Hey-Cunningham AJ. The role of the lymphatic system in endometriosis: a comprehensive review of the literature. Biol Reprod. 2015;92(3):64. doi:10.1095/biolreprod.114.124313.

4. Fazleabas AT, Braundmeier A, Parkin K. Endometriosis-induced changes in regulatory T cells – insights towards developing permanent contraception. Contraception. 2015;92(2):116–9. doi:10.1016/j.contraception.2015.06.006.

5. Giuliani E, Parkin KL, Lessey BA, Young SL, Fazleabas AT. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–9. doi:10.1111/aji.12259.

6. Berbic M, Ng CH, Black K, Markham R, Russell P, Basten A, Fraser IS, Hey-Cunningham AJ. A novel pilot study of endometrial stromal cells and immune cell populations in sentinel uterine-draining lymph nodes during the menstrual cycle and in endometriosis. Reprod Sci. 2013;20(11):1339–48. doi:10.1177/1933719113485298.

7. Лысенко МА, Метелин ВБ, Баранова НВ. Опыт применения инновационных клеточных технологий в диагностике эндометриоидных кист яичников. Медицинский вестник Северного Кавказа. 2012;(2):33–6.

8. Сахаутдинова ИВ, Мустафина ГТ, Хабибуллина РН, Яркина ЕИ. Современные методы диагностики и лечения эндометриоза яичников. Медицинский вестник Башкортостана. 2015;10(1):113–7.

9. Ceballos S, Kandel M, Sridharan S, Majeed H, Monroy F, Popescu G. Active intracellular transport in metastatic cells studied by spatial light interference microscopy. J Biomed Opt. 2015;20(11):111209. doi:10.1117/1.JBO.20.11.111209.

10. Nguyen TH, Majeed H, Popescu G. Plane-wave decomposition of spatially random fields. Opt Lett. 2015;40(7):1394–7. doi:10.1364/OL.40.001394.

11. Levin GG, Vishnyakov GN, Minaev VL, Latushko MI, Pickalov VV, Demyanenko AV. Shearing interference microscopy for tomography of living cells. Proc. SPIE. 2015;9536:95360G.

12. Tychinsky V, Kretushev AV, Klemyashov IV, Zverzhkhovskiy VD, Vyshenskaya TV, Shtil AA. Quantitative phase imaging of living cells: application of the phase volume and area functions to the analysis of "nucleolar stress". J Biomed Opt. 2013;18(11):111413. doi:10.1117/1.JBO.18.11.111413.

13. Rapkin LM, Anchel DR, Li R, Bazett-Jones DP. A view of the chromatin landscape. Micron. 2012;43(2–3):150–8. doi: 10.1016/j.micron.2011.11.007.

14. Rodriguez A, Bjerling P. The links between chromatin spatial organization and biological function. Biochem Soc Trans. 2013;41(6):1634– 9. doi:10.1042/BST20130213.

15. Spagnol ST, Armiger TJ, Dahl KN. Mechanobiology of chromatin and the nuclear interior. Cell Mol Bioeng. 2016;9(2):268–76. doi:10.1007/s12195-016-0444-9.

16. Bernardi G. Genome organization and chromosome architecture. Cold Spring Harb Symp Quant Biol. 2015;80:83–91. doi:10.1101/sqb.2015.80.027318.

17. Eagen KP, Hartl TA, Kornberg RD. Stable chromosome condensation revealed by chromosome conformation capture. Cell. 2015;163(4): 934–46. doi:10.1016/j.cell.2015.10.026.

18. Mir M, Wang Z, Shen Z, Bednarz M, Bashir R, Golding I, Prasanth SG, Popescu G. Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci USA. 2011;108(32):13124–9. doi:10.1073/pnas.1100506108.

19. Lakadamyali M, Cosma MP. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett. 2015;589(20 Pt A):3023–30. doi:10.1016/j.febslet.2015.04.012.

20. Вышенская ТВ, Болотова АА, Василенко ИА, Звержховский ВД, Болдырев ДМ, Кретушев АВ, Евдокимов АА. Определение цитотоксического потенциала CD8+ Т-лимфоцитов методом когерентной фазовой микроскопии. Биофизика. 2016;61(3):523–7.

21. Vasilenko I, Metelin V, Nasyrov M, Kuznetsov A, Sukhenko E, Belyakov V. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases. Proc. SPIE. 2015;9336:93362K1–4.

22. Адамян ЛВ, ред. Эндометриоз: диагностика, лечение и реабилитация. Федеральные клинические рекомендации по ведению больных. М.; 2013. 65 с.

23. Ерофеева ЛВ. Применение комбинированного контрацептивного препарата, содержащего диеногест и этинилэстрадиол, при эндометриозе. Медицинский совет. 2016;(2): 14–21.

24. Ярмолинская МИ, Беженарь ВФ. Опыт применения диеногеста в комбинированном лечении генитального эндометриоза. Фарматека. 2013;(3):48–51.

25. Park SY, Kim SH, Chae HD, Kim CH, Kang BM. Efficacy and safety of dienogest in patients with endometriosis: A single-center observational study over 12 months. Clin Exp Reprod Med. 2016;43(4):215–20. doi:10.5653/cerm.2016.43.4.215.

Almanac of Clinical Medicine. 2017; 45: 109-117

Evaluation of the lymphocyte interphase nuclei phenotype by quantitative phase imaging (QPI) in patients with endometrial ovarian cysts

Gasparyan S. A., Popova O. S., Vasilenko I. A., Khripunova A. A., Metelin V. B.

https://doi.org/10.18786/2072-0505-2017-45-2-109-117

Abstract

Rationale: Ovarian endometriosis is a progressive disease with growing prevalence and severity. Therefore, the development of robust non-invasive laboratory screening methods for early diagnosis on the out-patient basis seems quite relevant. Aim: To assess a potential of the quantitative phase imaging technique for early diagnosis of ovarian endometrial cysts and post-operative relapses of the disease. Materials and methods: We analyzed 1578 nuclei of the peripheral blood lymphocytes from 82 patients with ovarian endometrial cysts, aged 21 to 37 years (mean age 26.4 ± 3.6 years). The patients were follow-up in a gynecology out-patient clinic (the town of Yessentuki, Russia). Assessments were made longitudinally, i.e., before a laparoscopic cystectomy, at 6 and 12 months in the post-operative period with or without treatment with dienogest-containing agents. Morphological and functional status of the nuclei from the peripheral blood lymphocytes was assessed in the real-time mode by quantitative phase imaging (QPI) with the phase-interference microscopy module of the Bioni hardware and software complex (Westgrade Ltd., Moscow) for clinical and laboratory diagnostics, and the morphodensitometric segmentation technology. Results: The comparative analysis of morphometric parameters of CD3<sup>+</sup> cells taken from peripheral blood of healthy non-pregnant women and patients with ovarian endometrial cysts before surgery showed a significant increase of the calculated functional activities of the lymphocyte nuclei (0.898 vs 0.783, p < 0.05). Assessment of changes overt time in the differential diagnostic criteria of the nuclear response in the peripheral blood lymphocytes from patients with endometrial ovarian cysts showed the following. Compared to the parameters obtained before treatment, at 6 and 12 months of the post-operative period the relative intensity of nuclear segments (ΔI) decreased by 10.3 and 14.7, 10.6 and 12.9% in the group treated with and without dienogest, respectively. Relative distance between the centers of the nuclear segments (ΔL) demonstrated a trend towards an increase by 0.6 and 0.9, 4.2 and 2.1%. The numbers of nuclear segments increased by 18.3 and 13.4, 27.4 and 16.9%, whereas the nuclear perimeter decreased by 13.9 and 12.6, 11.9 and 7.8%, respectively. In the patients treated with dienogest, the rate of non-relapse at 6 and 12 months of the follow-up was 100%, whereas in the patients without dienogest therapy, 97.5 and 93.5%, respectively. Discussion: Interphase chromatin is a unique biosensor of the early abnormalities in a lymphoid cell. Modification of its structure and packaging density not only indicate changes of the morphofunctional status of the lymphocyte, but can be projected to the body as a whole and used for early pre-clinical diagnosis, assessment of severity of the pathological process and prediction of the outcome in various critic states. Conclusion: Practical implementation of QPI for clinical monitoring of patients with ovarian endometrial cysts makes it possible to obtain important information on the cell immunity in real time. It opens new opportunities to assess the efficacy of treatment and rehabilitation activities, as well as for early pre-clinical diagnosis of relapsing disease.

 

References

1. .Adamyan LV, Aznaurova YaB. Molekulyarnye aspekty patogeneza endometrioza. Problemy reproduktsii. 2015;21(2):66–77. doi:10.17116/repro201521266-77.

2. Dubinskaya ED, Dutov AA, Lapteva NV, Babicheva IA, Kolesnikova SN. Endometrioidnye kisty yaichnikov i fertil'nost': diskussionnye aspekty. Voprosy ginekologii, akusherstva i perinatologii. 2015;14(5): 27–35.

3. Jerman LF, Hey-Cunningham AJ. The role of the lymphatic system in endometriosis: a comprehensive review of the literature. Biol Reprod. 2015;92(3):64. doi:10.1095/biolreprod.114.124313.

4. Fazleabas AT, Braundmeier A, Parkin K. Endometriosis-induced changes in regulatory T cells – insights towards developing permanent contraception. Contraception. 2015;92(2):116–9. doi:10.1016/j.contraception.2015.06.006.

5. Giuliani E, Parkin KL, Lessey BA, Young SL, Fazleabas AT. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–9. doi:10.1111/aji.12259.

6. Berbic M, Ng CH, Black K, Markham R, Russell P, Basten A, Fraser IS, Hey-Cunningham AJ. A novel pilot study of endometrial stromal cells and immune cell populations in sentinel uterine-draining lymph nodes during the menstrual cycle and in endometriosis. Reprod Sci. 2013;20(11):1339–48. doi:10.1177/1933719113485298.

7. Lysenko MA, Metelin VB, Baranova NV. Opyt primeneniya innovatsionnykh kletochnykh tekhnologii v diagnostike endometrioidnykh kist yaichnikov. Meditsinskii vestnik Severnogo Kavkaza. 2012;(2):33–6.

8. Sakhautdinova IV, Mustafina GT, Khabibullina RN, Yarkina EI. Sovremennye metody diagnostiki i lecheniya endometrioza yaichnikov. Meditsinskii vestnik Bashkortostana. 2015;10(1):113–7.

9. Ceballos S, Kandel M, Sridharan S, Majeed H, Monroy F, Popescu G. Active intracellular transport in metastatic cells studied by spatial light interference microscopy. J Biomed Opt. 2015;20(11):111209. doi:10.1117/1.JBO.20.11.111209.

10. Nguyen TH, Majeed H, Popescu G. Plane-wave decomposition of spatially random fields. Opt Lett. 2015;40(7):1394–7. doi:10.1364/OL.40.001394.

11. Levin GG, Vishnyakov GN, Minaev VL, Latushko MI, Pickalov VV, Demyanenko AV. Shearing interference microscopy for tomography of living cells. Proc. SPIE. 2015;9536:95360G.

12. Tychinsky V, Kretushev AV, Klemyashov IV, Zverzhkhovskiy VD, Vyshenskaya TV, Shtil AA. Quantitative phase imaging of living cells: application of the phase volume and area functions to the analysis of "nucleolar stress". J Biomed Opt. 2013;18(11):111413. doi:10.1117/1.JBO.18.11.111413.

13. Rapkin LM, Anchel DR, Li R, Bazett-Jones DP. A view of the chromatin landscape. Micron. 2012;43(2–3):150–8. doi: 10.1016/j.micron.2011.11.007.

14. Rodriguez A, Bjerling P. The links between chromatin spatial organization and biological function. Biochem Soc Trans. 2013;41(6):1634– 9. doi:10.1042/BST20130213.

15. Spagnol ST, Armiger TJ, Dahl KN. Mechanobiology of chromatin and the nuclear interior. Cell Mol Bioeng. 2016;9(2):268–76. doi:10.1007/s12195-016-0444-9.

16. Bernardi G. Genome organization and chromosome architecture. Cold Spring Harb Symp Quant Biol. 2015;80:83–91. doi:10.1101/sqb.2015.80.027318.

17. Eagen KP, Hartl TA, Kornberg RD. Stable chromosome condensation revealed by chromosome conformation capture. Cell. 2015;163(4): 934–46. doi:10.1016/j.cell.2015.10.026.

18. Mir M, Wang Z, Shen Z, Bednarz M, Bashir R, Golding I, Prasanth SG, Popescu G. Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci USA. 2011;108(32):13124–9. doi:10.1073/pnas.1100506108.

19. Lakadamyali M, Cosma MP. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett. 2015;589(20 Pt A):3023–30. doi:10.1016/j.febslet.2015.04.012.

20. Vyshenskaya TV, Bolotova AA, Vasilenko IA, Zverzhkhovskii VD, Boldyrev DM, Kretushev AV, Evdokimov AA. Opredelenie tsitotoksicheskogo potentsiala CD8+ T-limfotsitov metodom kogerentnoi fazovoi mikroskopii. Biofizika. 2016;61(3):523–7.

21. Vasilenko I, Metelin V, Nasyrov M, Kuznetsov A, Sukhenko E, Belyakov V. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases. Proc. SPIE. 2015;9336:93362K1–4.

22. Adamyan LV, red. Endometrioz: diagnostika, lechenie i reabilitatsiya. Federal'nye klinicheskie rekomendatsii po vedeniyu bol'nykh. M.; 2013. 65 s.

23. Erofeeva LV. Primenenie kombinirovannogo kontratseptivnogo preparata, soderzhashchego dienogest i etinilestradiol, pri endometrioze. Meditsinskii sovet. 2016;(2): 14–21.

24. Yarmolinskaya MI, Bezhenar' VF. Opyt primeneniya dienogesta v kombinirovannom lechenii genital'nogo endometrioza. Farmateka. 2013;(3):48–51.

25. Park SY, Kim SH, Chae HD, Kim CH, Kang BM. Efficacy and safety of dienogest in patients with endometriosis: A single-center observational study over 12 months. Clin Exp Reprod Med. 2016;43(4):215–20. doi:10.5653/cerm.2016.43.4.215.