Альманах клинической медицины. 2015; : 82-89
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ЛАЗЕРНЫЕ ТЕХНОЛОГИИ В РЕАБИЛИТАЦИИ ПАЦИЕНТОВ ПРИ ТРАВМЕ СРЕДНЕЙ ЗОНЫ ЛИЦА
Стучилов В. А., Никитин А. А., Секирин А. Б., Филатова Е. В., Ларионов К. С., Гришин А. С., Кокорев В. Ю., Рябцева А. А.
https://doi.org/10.18786/2072-0505-2015-36-82-89Аннотация
Цель – определение характера повреждений структур опорно-мышечного аппарата глаза и глазницы, выработка алгоритма лазерной терапии для восстановления кровообращения в зоне повреждения орбиты и транскраниальной лазерной терапии для нормализации микроциркуляции во всех группах мышц челюстно-лицевой области.
Материал и методы. Проанализированы результаты обследования и лечения 75 больных с травмой средней зоны лица с использованием методов лазерной спектрофотометрии и компьютерного моделирования структур орбиты во фронтальной, сагиттальной и наклонных плоскостях с SSD-, MPR- и VRT-реконструкциями. При компьютерном моделировании применялось программное обеспечение Mimics (Materialise, Leuven, Бельгия). Для исследования микроциркуляции тканей орбитальной и челюстно-лицевой областей использовался комплекс Спектротест. При исследовании регистрировались концентрация кислорода в тканях (сатурация (StO2)) и индекс объемного кровенаполнения сосудов микроциркуляторного русла (Vкр).
Результаты. Компьютерное моделирование позволило выделить следующие варианты повреждений опорно-мышечного аппарата глаза и глазницы: ущемление глазодвигательной мышцы у 60% больных, угловое смещение мышечного брюшка – 30%, мышечную контузию – 45%, гематомы орбитальной области – 18%, рубцовую деформацию опорно-мышечного аппарата глазницы – 40%. В раннем периоде после травмы при повреждении стенок глазницы и верхнечелюстного синуса в микроциркуляторном русле Vкр снижался в среднем на 12,5 ± 0,5% по сравнению с нормой, при этом на здоровой стороне объем микроциркуляции увеличивался в среднем на 28,5 ± 0,1% по сравнению с нормой. В отдаленном периоде после репозиции костных отломков сохранялось перераспределение объема циркулирующей крови: повышение отмечено только у 10% больных. При тяжелых травмах и длительно существующих рубцовых деформациях локальные воздействия лазерного излучения увеличивали Vкр с двух сторон, но при этом сохранялись достоверно повышенные показатели StО2 (до 25,0 ± 0,6%), что характерно для нарушенной трофики тканей и в катамнезе не исключает развития воспалительных осложнений.
Заключение. Метод компьютерного моделирования наиболее информативен при исследовании повреждений опорно-мышечных структур глаза и глазницы и рекомендуется при проведении диагностики и составлении плана реабилитации больных с данной патологией. Метод лазерной спектрофотометрии позволяет проследить в динамике процесс восстановления микроциркуляции тканей в до- и послеоперационном периоде и во время проведения реабилитационных мероприятий.
Список литературы
1. Вялов СЛ, Пшеничнов КП, Куиндоз П, Монтандон Д, Питте Б. Современные представления о регуляции процесса заживления ран (обзор литературы). Анналы пластической, реконструктивной и эстетической хирургии. 1999;(1):49–56. (Vyalov SL, Pshenichnov KP, Kuindoz P, Montandon D, Pitte B. [Current concepts of regulation of wound repair (literature review)]. Annaly plasticheskoy, rekonstruktivnoy i esteticheskoy khirurgii. 1999;(1):49–56. Russian).
2. Ипполитов ВП, Мариничева ИГ. Анализ отдаленных результатов хирургического лечения посттравматических деформаций лобно-носо-глазничного комплекса. В: Материалы VII Международной конференции челюстно-лицевых хирургов и стоматологов. Санкт-Петербург, 28-30 мая 2012 г. СПб.; 2002:69. (Ippolitov VP, Marinicheva IG. Analysis of the long-term results of surgical correction of post-traumatic deformations of frontal-nasalorbital complex. In: Proceedings of the VII International Conference of Oral and Maxillofacial Surgeons and Dentists. Saint Petersburg; 2002:69. Russian).
3. Fan X, Li J, Zhu J, Li H, Zhang D. Computerassisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures. Ophthal Plast Reconstr Surg. 2003;19(3):207–11.
4. Николаенко ВП, Астахов ЮС. Орбитальные переломы: руководство для врачей. СПб.: Эко-вектор; 2012. 436 с. (Nikolaenko VP, Astakhov YuS. Orbital facial fractures: physician guidance. Saint Petersburg: Eko-vektor; 2012. 436 p. Russian).
5. Weaver AA, Loftis KL, Tan JC, Duma SM, Stitzel JD. CT Based Three-Dimensional Measurement of Orbit and Eye Anthropometry. Invest Ophthalmol Vis Sci. 2010;51(10):4892–7.
6. Burnstine MA. Clinical recommendations for repair of orbital facial fractures. Curr Opin Ophthalmol. 2003;14(5):236–40.
7. Крупаткин АИ, Голубев ВГ, Панов ДЕ. Лазерная допплеровская флоуметрия в диагностике и выборе тактики лечения при повреждениях периферических нервов.
8. В: Крупаткин АИ, Сидоров ВВ, ред. Лазерная допплеровская флоуметрия микроциркуляции крови. М.: Медицина; 2005. с. 136–48. (Krupatkin AI, Golubev VG, Panov DE. Laser Doppler flowmetry for diagnosis and treatment choice in peripheral nerves damage. In: Krupatkin AI, Sidorov VV, editors. Laser Doppler flowmetry of blood microcirculation. Moscow: Meditsina; 2005. p. 136–48.Russian).
9. Fuller SC, Strong EB. Computer applications in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg.
10. ;15(4):233–7.
11. Kim YK, Park CS, Kim HK, Lew DH, Tark KC. Correlation between changes of medial rectus muscle section and enophthalmos in patients with medial orbital wall fracture. J Plast Reconstr Aesthet Surg. 2009;62(11):1379–83.
12. Kolk A, Pautke C, Wiener E, Ploder O, Neff A. A novel high-resolution magnetic resonance imaging microscopy coil as an alternative to the multislice computed tomography in postoperative imaging of orbital fractures and computer-based volume measurement. J Oral Maxillofac Surg. 2005;63(4):492–8.
13. Ploder O, Klug C, Voracek M, Backfrieder W, Tschabitscher M, Czerny C, Baumann A. A computer-based method for calculation of orbital floor fractures from coronal computed tomography scans. J Oral Maxillofac Surg. 2001;59(12):1437–42.
14. Ploder O, Klug C, Backfrieder W, Voracek M, Czerny C, Tschabitscher M. 2D- and 3D-based measurements of orbital floor fractures from CT scans. J Craniomaxillofac Surg. 2002;30(3):153–9.
15. Ploder O, Klug C, Voracek M, Burggasser G, Czerny C. Evaluation of computer-based area and volume measurement from coronal computed tomography scans in isolated blowout fractures of the orbital floor. J Oral Maxillofac Surg. 2002;60(11):1267–72.
16. Regensburg NI, Kok PH, Zonneveld FW, Baldeschi L, Saeed P, Wiersinga WM, Mourits MP. A new and validated CT-based method for the calculation of orbital soft tissue volumes. Invest Ophthalmol Vis Sci. 2008;49(5):1758–62.
Almanac of Clinical Medicine. 2015; : 82-89
COMPUTER MODELING AND LASER TECHNOLOGIES IN REHABILITATION OF PATIENTS WITH MIDFACIAL TRAUMA
Stuchilov V. A., Nikitin A. A., Sekirin A. B., Filatova E. V., Larionov K. S., Grishin A. S., Kokorev V. Yu., Ryabtseva A. A.
https://doi.org/10.18786/2072-0505-2015-36-82-89Abstract
Aim: To assess the kind of damage of musculoskeletal apparatus of eye and orbit. To develop algorithm of laser therapy to restore orbital circulation and algorithm of transcranial laser therapy to improve microcirculation in maxillofacial muscles.
Materials and methods: 75 patients with midfacial trauma were examined using laser spectrophotometry and computer modeling of orbital structures in frontal, sagittal, and inclined planes with SSD, MPR and VRT reconstructions (with Mimics software (Materialise, Leuven, Belgium)). To study orbital and maxillofacial microcirculation complex Spectrotest was used. Tissue oxygen concentration (SatO2) and blood filling volume index of microcirculation (Vbf) were measured.
Results: After computer modeling, several variants of damage of musculoskeletal apparatus of eye and orbit were identified including oculomotor muscle entrapment in 60% of patients, angular deviation of muscle belly in 30%, muscle contusion – in 45%, orbital hematoma – in 18%, scarring of musculoskeletal apparatus of orbit – in 40%. During early period of trauma of orbital wall and maxillary sinus, Vbf decreased by a mean of 12.5 ± 0.5% compared to normal values, whereas contralateral microcirculation increased by a mean of 28.5 ± 0.1% compared to normal values. Abnormal blood distribution persisted in the long-term, after bone reposition: blood flow increase was found only in 10% of patients. In severe trauma and chronic scarring, local laser irradiation was associated with increase of Vbf bilaterally, but chronically and significantly increased SatO2 indicated impaired tissue trophics and high risk of inflammatory complications.
Conclusion: Computer modeling is of great value in the diagnosis and rehabilitation planning in patients with injuries of musculoskeletal apparatus of eye and orbital structures. Laser spectrophotometry is useful for the monitoring of microcirculation before, after the operation and during rehabilitation.
References
1. Vyalov SL, Pshenichnov KP, Kuindoz P, Montandon D, Pitte B. Sovremennye predstavleniya o regulyatsii protsessa zazhivleniya ran (obzor literatury). Annaly plasticheskoi, rekonstruktivnoi i esteticheskoi khirurgii. 1999;(1):49–56. (Vyalov SL, Pshenichnov KP, Kuindoz P, Montandon D, Pitte B. [Current concepts of regulation of wound repair (literature review)]. Annaly plasticheskoy, rekonstruktivnoy i esteticheskoy khirurgii. 1999;(1):49–56. Russian).
2. Ippolitov VP, Marinicheva IG. Analiz otdalennykh rezul'tatov khirurgicheskogo lecheniya posttravmaticheskikh deformatsii lobno-noso-glaznichnogo kompleksa. V: Materialy VII Mezhdunarodnoi konferentsii chelyustno-litsevykh khirurgov i stomatologov. Sankt-Peterburg, 28-30 maya 2012 g. SPb.; 2002:69. (Ippolitov VP, Marinicheva IG. Analysis of the long-term results of surgical correction of post-traumatic deformations of frontal-nasalorbital complex. In: Proceedings of the VII International Conference of Oral and Maxillofacial Surgeons and Dentists. Saint Petersburg; 2002:69. Russian).
3. Fan X, Li J, Zhu J, Li H, Zhang D. Computerassisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures. Ophthal Plast Reconstr Surg. 2003;19(3):207–11.
4. Nikolaenko VP, Astakhov YuS. Orbital'nye perelomy: rukovodstvo dlya vrachei. SPb.: Eko-vektor; 2012. 436 s. (Nikolaenko VP, Astakhov YuS. Orbital facial fractures: physician guidance. Saint Petersburg: Eko-vektor; 2012. 436 p. Russian).
5. Weaver AA, Loftis KL, Tan JC, Duma SM, Stitzel JD. CT Based Three-Dimensional Measurement of Orbit and Eye Anthropometry. Invest Ophthalmol Vis Sci. 2010;51(10):4892–7.
6. Burnstine MA. Clinical recommendations for repair of orbital facial fractures. Curr Opin Ophthalmol. 2003;14(5):236–40.
7. Krupatkin AI, Golubev VG, Panov DE. Lazernaya dopplerovskaya floumetriya v diagnostike i vybore taktiki lecheniya pri povrezhdeniyakh perifericheskikh nervov.
8. V: Krupatkin AI, Sidorov VV, red. Lazernaya dopplerovskaya floumetriya mikrotsirkulyatsii krovi. M.: Meditsina; 2005. s. 136–48. (Krupatkin AI, Golubev VG, Panov DE. Laser Doppler flowmetry for diagnosis and treatment choice in peripheral nerves damage. In: Krupatkin AI, Sidorov VV, editors. Laser Doppler flowmetry of blood microcirculation. Moscow: Meditsina; 2005. p. 136–48.Russian).
9. Fuller SC, Strong EB. Computer applications in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg.
10. ;15(4):233–7.
11. Kim YK, Park CS, Kim HK, Lew DH, Tark KC. Correlation between changes of medial rectus muscle section and enophthalmos in patients with medial orbital wall fracture. J Plast Reconstr Aesthet Surg. 2009;62(11):1379–83.
12. Kolk A, Pautke C, Wiener E, Ploder O, Neff A. A novel high-resolution magnetic resonance imaging microscopy coil as an alternative to the multislice computed tomography in postoperative imaging of orbital fractures and computer-based volume measurement. J Oral Maxillofac Surg. 2005;63(4):492–8.
13. Ploder O, Klug C, Voracek M, Backfrieder W, Tschabitscher M, Czerny C, Baumann A. A computer-based method for calculation of orbital floor fractures from coronal computed tomography scans. J Oral Maxillofac Surg. 2001;59(12):1437–42.
14. Ploder O, Klug C, Backfrieder W, Voracek M, Czerny C, Tschabitscher M. 2D- and 3D-based measurements of orbital floor fractures from CT scans. J Craniomaxillofac Surg. 2002;30(3):153–9.
15. Ploder O, Klug C, Voracek M, Burggasser G, Czerny C. Evaluation of computer-based area and volume measurement from coronal computed tomography scans in isolated blowout fractures of the orbital floor. J Oral Maxillofac Surg. 2002;60(11):1267–72.
16. Regensburg NI, Kok PH, Zonneveld FW, Baldeschi L, Saeed P, Wiersinga WM, Mourits MP. A new and validated CT-based method for the calculation of orbital soft tissue volumes. Invest Ophthalmol Vis Sci. 2008;49(5):1758–62.
События
-
Журналы « Advanced Engineering Research (Rostov-on-Don)» и «Проблемы Арктики и Антарктики» принят в Scopus! >>>
5 мая 2025 | 11:44 -
Журнал «Здоровье мегаполиса» принят в DOAJ >>>
28 апр 2025 | 11:41 -
Журнал «Морская медицина» присоединился к Elpub! >>>
23 апр 2025 | 11:39 -
К платформе Elpub присоединился журнал «Кавказология» >>>
8 апр 2025 | 11:33 -
Журнал «Вестник проектного управления» присоединился к Elpub! >>>
27 мар 2025 | 11:27