Журналов:     Статей:        

Альманах клинической медицины. 2021; 49: 49-55

Протонная магнитно-резонансная спектроскопия как альтернативный количественный метод оценки прочности костей

Иванцова А. С., Меньщиков П. Е., Полякова У. А., Манжурцев А. В., Ублинский М. В., Ахадов Т. А., Куприянов Д. А., Семенова Н. А.

https://doi.org/10.18786/2072-0505-2021-49-002

Аннотация

Цели: 1)  исследовать взаимосвязь между количественным содержанием жира и  минеральной плотностью костной ткани, определенными с  помощью локализированной протонной магнитно-резонансной спектроскопии (1Н-МРС) и количественной компьютерно-томографической денситометрии (ККТД) соответственно, в неповрежденных позвонках у  детей после компрессионного перелома; 2)  сравнить значения фракции жира и  минеральной плотности костной ткани (МПКТ) со степенью тяжести компрессионного перелома позвоночника.

Материал и  методы. В  исследовании приняли участие 20  пациентов (средний возраст 11,1±2,1  года) с  травматическим компрессионным переломом позвонка. МПКТ (мг/см3 ) измерялась в позвонках L3, L4 по данным ККТД на аппарате Philips Brilliance  16. Значения содержания жира (СЖ) в той же области определяли количественно по 1H-МР-спектрам (импульсная последовательность STEAM: время эхо=12,8 мс, время повторения=3000 мс, размер вокселя=20×15×10  мм) с  использованием МР-томографа Philips Achieva TX.

Результаты. Корреляционный анализ выявил статистически значимую обратную линейную корреляцию (r=-0,55, p=0,0004) между значениями СЖ и  МПКТ, рассчитанными в  позвонках L3 и L4. Кроме того, у пациентов с компрессионным переломом позвонка тяжелой степени (более 2  переломов) зафиксировано значительное увеличение значений СЖ наряду с  уменьшением МПКТ по сравнению с  аналогичными показателями у пациентов с переломом легкой степени (1–2 перелома позвонков).

Заключение. Выявленная корреляционная зависимость позволяет предположить, что у детей процессы увеличения СЖ в  костном мозге и  снижения МПКТ протекают параллельно. Таким образом, 1H-MРC можно рассматривать в  качестве альтернативы ККТД и  двухэнергетической рентгеновской абсорбциометрии. Отсутствие лучевой нагрузки на пациента позволяет рекомендовать использование 1Н-МРС для скринингового и динамического контроля, а также для контроля значений МПКТ.

Список литературы

1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795. doi: 10.1001/jama.285.6.785.

2. Wang P, Abdin E, Shafie S, Chong SA, Vaingankar JA, Subramaniam M. Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. Int J Environ Res Public Health. 2019;16(13):2338. doi: 10.3390/ijerph16132338.

3. Мальцев СВ, Мансурова ГШ. Снижение минеральной плотности кости у детей и подростков: причины, частота развития, лечение. Вопросы современной педиатрии. 2015;14(5):573–578. doi: 10.15690/vsp.v14i5.1442.

4. Струков ВИ, Сергеева-Кондраченко МЮ, Струкова-Джоунс ОВ, Галеева РТ, Радченко ЛГ, Гербель МН, Шурыгина ЕБ, Романовская ЛД, Еремина НВ, Вирясова НА. Актуальные проблемы остеопороза: монография. Пенза: Ростра; 2009. 342 с.

5. Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. Semin Nucl Med. 2010;40(1):62–73. doi: 10.1053/j.semnuclmed.2009.08.001.

6. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–424. doi: 10.1016/j.ejrad.2009.04.074.

7. Tavassoli M, Crosby WH. Bone marrow histogenesis: a comparison of fatty and red marrow. Science. 1970;169(3942):291–293. doi: 10.1126/science.169.3942.291.

8. Gatter K, Brown D. Bone marrow diagnosis: An illustrated guide, 3rd edition. Chichester: Wiley-Blackwell; 2014. 232 p.

9. Shih TT, Chang CJ, Hsu CY, Wei SY, Su KC, Chung HW. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976). 2004;29(24):2844–2850. doi: 10.1097/01.brs.0000147803.01224.5b.

10. Karampinos DC, Ruschke S, Gordijenko O, Grande Garcia E, Kooijman H, Burgkart R, Rummeny EJ, Bauer JS, Baum T. Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos. 2015;2015:152349. doi: 10.1155/2015/152349.

11. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35(1): 117–124. doi: 10.1002/jmri.22757.

12. Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat quantification in the vertebral body: comparison of modified dixon technique with single-voxel magnetic resonance spectroscopy. Korean J Radiol. 2019;20(1): 126–133. doi: 10.3348/kjr.2018.0174.

13. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–951. doi: 10.1148/radiol.2363041425.

14. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–838. doi: 10.1148/radiol.2413051858.

15. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol. 1967;94(2):275–291. doi: 10.1002/path.1700940205.

16. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–154. doi: 10.1097/00003086-197110000-00021.

17. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone – new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–945. doi: 10.1210/jc.2012-3634.

18. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98(2):251–266. doi: 10.1002/jcb.20777.

19. Duque G. Bone and fat connection in aging bone. Curr Opin Rheumatol. 2008;20(4):429– 434. doi: 10.1097/BOR.0b013e3283025e9c.

20. Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR Imaging of Pediatric Bone Marrow. Radiographics. 2016;36(6):1911–1930. doi: 10.1148/rg.2016160056.

21. Ruschke S, Pokorney A, Baum T, Eggers H, Miller JH, Hu HH, Karampinos DC. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI. MAGMA. 2017;30(5):449–460. doi: 10.1007/s10334-017-0617-0.

22. Spector TD, McCloskey EV, Doyle DV, Kanis JA. Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study. J Bone Miner Res. 1993;8(7):817–822. doi: 10.1002/jbmr.5650080707.

Almanac of Clinical Medicine. 2021; 49: 49-55

Proton magnetic resonance spectroscopy as an alternative method for quantitative assessment of mineral bone density

Ivantsova A. S., Menshchikov P. E., Polyakova U. A., Manzhurtsev A. V., Ublinskiy M. V., Akhadov T. A., Kupriyanov D. A., Semenova N. A.

https://doi.org/10.18786/2072-0505-2021-49-002

Abstract

Aims: 1) To evaluate an association between the fat fraction (FF) and bone mineral density (BMD) measured by localized proton magnetic resonance spectroscopy (1H-MRS) and quantitative computed tomography (QCT) densitometry, respectively, in healthy vertebrae of children after a compression fracture; 2) To compare the FF and BMD values with the severity of the compression vertebrae fractures.

Materials and methods: Twenty (20) patients (aged 11.1±2.1 years) with a trauma-induced compression vertebral fractures participated in the study. The BMD of L3, L4 vertebrae (mg/cm3) was measured in by QCT (Philips Brilliance 16). FF in the same area was measured from 1H-MR-spectra (STEAM, echo time (TE)=12.8 ms, repetition time (TR)=3000 ms, voxel size=20×15×10 mm) using Philips Achieva TX 3.0T MRI scanner.

Results: Correlation analysis revealed a  significant inverse linear correlation (r=-0.55, p=0.0004) between FF and BMD of L3 и L4 vertebrae. In addition, in the patients with severe compression vertebral fracture (more than 2 fractured vertebrae) there was a  significant increase in FF values and a  BMD decrease, compared to the values in the patients with mild fractures (1–2 fractured vertebrae).

Conclusion: The correlation suggests that the increase of FF in the bone marrow and the decrease of BMD in children go in parallel. Therefore, 1H-MRS could be an alternative to QCT and dual-energy X-ray absorptiometry. The absence of radiation load allows for recommendation to use 1Н-MRS for screening and follow-up, as well as for the control of BMD.

References

1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795. doi: 10.1001/jama.285.6.785.

2. Wang P, Abdin E, Shafie S, Chong SA, Vaingankar JA, Subramaniam M. Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. Int J Environ Res Public Health. 2019;16(13):2338. doi: 10.3390/ijerph16132338.

3. Mal'tsev SV, Mansurova GSh. Snizhenie mineral'noi plotnosti kosti u detei i podrostkov: prichiny, chastota razvitiya, lechenie. Voprosy sovremennoi pediatrii. 2015;14(5):573–578. doi: 10.15690/vsp.v14i5.1442.

4. Strukov VI, Sergeeva-Kondrachenko MYu, Strukova-Dzhouns OV, Galeeva RT, Radchenko LG, Gerbel' MN, Shurygina EB, Romanovskaya LD, Eremina NV, Viryasova NA. Aktual'nye problemy osteoporoza: monografiya. Penza: Rostra; 2009. 342 s.

5. Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. Semin Nucl Med. 2010;40(1):62–73. doi: 10.1053/j.semnuclmed.2009.08.001.

6. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–424. doi: 10.1016/j.ejrad.2009.04.074.

7. Tavassoli M, Crosby WH. Bone marrow histogenesis: a comparison of fatty and red marrow. Science. 1970;169(3942):291–293. doi: 10.1126/science.169.3942.291.

8. Gatter K, Brown D. Bone marrow diagnosis: An illustrated guide, 3rd edition. Chichester: Wiley-Blackwell; 2014. 232 p.

9. Shih TT, Chang CJ, Hsu CY, Wei SY, Su KC, Chung HW. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976). 2004;29(24):2844–2850. doi: 10.1097/01.brs.0000147803.01224.5b.

10. Karampinos DC, Ruschke S, Gordijenko O, Grande Garcia E, Kooijman H, Burgkart R, Rummeny EJ, Bauer JS, Baum T. Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos. 2015;2015:152349. doi: 10.1155/2015/152349.

11. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35(1): 117–124. doi: 10.1002/jmri.22757.

12. Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat quantification in the vertebral body: comparison of modified dixon technique with single-voxel magnetic resonance spectroscopy. Korean J Radiol. 2019;20(1): 126–133. doi: 10.3348/kjr.2018.0174.

13. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–951. doi: 10.1148/radiol.2363041425.

14. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–838. doi: 10.1148/radiol.2413051858.

15. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol. 1967;94(2):275–291. doi: 10.1002/path.1700940205.

16. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–154. doi: 10.1097/00003086-197110000-00021.

17. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone – new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–945. doi: 10.1210/jc.2012-3634.

18. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98(2):251–266. doi: 10.1002/jcb.20777.

19. Duque G. Bone and fat connection in aging bone. Curr Opin Rheumatol. 2008;20(4):429– 434. doi: 10.1097/BOR.0b013e3283025e9c.

20. Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR Imaging of Pediatric Bone Marrow. Radiographics. 2016;36(6):1911–1930. doi: 10.1148/rg.2016160056.

21. Ruschke S, Pokorney A, Baum T, Eggers H, Miller JH, Hu HH, Karampinos DC. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI. MAGMA. 2017;30(5):449–460. doi: 10.1007/s10334-017-0617-0.

22. Spector TD, McCloskey EV, Doyle DV, Kanis JA. Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study. J Bone Miner Res. 1993;8(7):817–822. doi: 10.1002/jbmr.5650080707.