Опухоли головы и шеи. 2020; 10: 74-85
Роль пародонтопатогенов в канцерогенезе плоскоклеточного рака слизистой оболочки полости рта
Казимов А. Э., Мудунов А. М., Григорьевская З. В., Задеренко И. А., Алиева С. Б., Багирова Н. С., Петухова И. Н., Терещенко И. В., Пак М. Б.
https://doi.org/10.17650/2222-1468-2020-10-4-74-85Аннотация
Цель исследования – оценить влияние пародонтопатогенных микроорганизмов на развитие плоскоклеточного рака слизистой оболочки полости рта и риск его рецидива.
Материалы и методы. Проведено микробиологическое исследование биоматериалов 150 пациентов. Основная группа включала 100 пациентов с плоскоклеточным раком слизистой оболочки полости рта T3 – T4 и была разделена на 2 подгруппы по 50 пациентов в каждой. В контрольную группу вошли 50 пациентов.
Результаты. Анализируя результаты, полученные в подгруппе первичных пациентов, выявлены следующие закономерности: у 2 (50 %) из 4 пациентов, у которых выделены Fusobacterium spp., развился рецидив основного заболевания, также отмечен случай отдаленного метастазирования в кости. Из 35 пациентов, в биоматериале которых обнаружены Prevotella spp., у 16 (45,7 %) выявлен рецидив опухолевого процесса. Из 10 пациентов с Veillonella spp. рецидив развился у 20 %. Из аэробов чаще всего встречались Streptococcus spр. Из пациентов, прошедших лечение в Национальном медицинском исследовательском центре онкологии им. Н.Н. Блохина, рецидивы развились у 28,5 %, а отдаленные метастазы – у 4,7 %. В подгруппе повторных пациентов выявлены следующие закономерности: из 27 пациентов, у которых выделены Fusobacterium spp., рецидив основного заболевания развился у 63 %. Из 26 пациентов, в биоматериале которых обнаружены Prevotella spp., у 11 (42,3 %) развился местный рецидив. Из 24 пациентов с Veillonella spp. рецидив развился у 33,3 %. Среди аэробов чаще всего выделялись Streptococcus spр., рецидивы развивались в 21 % случаев.
Список литературы
1. Пачес А.И. Опухоли головы и шеи. М., 2000. С. 460–480. [Paches A.I. Tumors of the head and neck. Moscow, 2000. Pp. 460–480. (In Russ.)].
2. Кропотов М.А., Матякин Е.Г., Желтова А.В., Дмитриева Н.В. Гнойные осложнения при хирургическом лечении больных раком полости рта и их профилактика. Антибиотики и химиотерапия 1999;(5):29–32.
3. Онкологические заболевания головы и шеи. Книга 3. Учебное пособие. Под ред. А.И. Новикова, Ж. Массарда. Омск, 2008. 147 с.
4. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. M., 2014. 226 c.
5. Nieminen M.T., Listyarifah D., Hagström J. et al. Treponema denticola chymotrypsin like proteinase maycontribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer 2018;118(3):428–34. DOI: 10.1038/bjc.2017.409.
6. Матякин Е.Г., Иванов В.М., Иванова О.В., Шейкин М.В. Хирургическая реабилитация больных местнораспространенным раком слизистой оболочки полости рта. Инфекции в хирургии 2013;11(4):40–3
7. Park S.Y., Kim M.S., Eom J.S. et al. Risk factors and etiology of surgical site infection after radical neck dissection in patients with head and neck cancer. Korean J Intern Med 2016;31(1):162–9. DOI: 10.3904/kjim.2016.31.1.162.
8. Hirakawa H., Hasegawa Y., Hanai N. et al. Surgical site infection in clean-contaminated head and neck cancer surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol 2013;270(3):1115–23. DOI: 10.1007/s00405-012-2128-y.
9. Григорьевская З.В., Петухова И.Н., Багирова Н.С. и др. Нозокомиальные инфекции у онкологических больных: проблема нарастающей резистентности грамотрицательных микроорганизмов. Сибирский онкологический журнал 2017;16(1):91–7.
10. Brook I., Hirokawa R. Microbiology of wound infection after head and neck cancer surgery. Ann Otol Rhinol Laryngol 1989;98(5 Pt 1):323–5. DOI: 10.1177/000348948909800501.
11. Karpiński T.M. Role of oral microbiota in cancer development. Microorganisms 2019;7(1):20. DOI: 10.3390/microorganisms7010020.
12. Hirakawa H., Hasegawa Y., Hanai N. et al. Surgical site infection in clean-contaminated head and neck cancer surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol 2013;270(3):1115–23. DOI: 10.1007/s00405-012-2128-y.
13. Belusic-Gobica M., Cara M., Juretica M. et al. Risk factors for wound infection after oral cancer surgery. Oral Oncol 2007;43(1):77–81. DOI: 10.1016/j.oraloncology.2006.01.006.
14. Human Oral Microbiome Database. Available at: http://www.homd.org/index.php.
15. Gao S., Li S., Ma Z. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinic opathological characteristics and survival in patients with esophageal cancer. Infect Agents Cancer 2016;11:3.
16. Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011;36(6):320–8. DOI: 10.1016/j.tibs.2011.03.006.
17. Yang S.H., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene 2013;513(1):1–13. DOI: 10.1016/j.gene.2012.10.033.
18. Михальченко Д.В., Жидовинов А.В. Ретроспективный анализ статистических данных заболеваемости злокачественными новообразованиями челюстно-лицевой локализации. Современные проблемы науки и образования 2016;(6)151.
19. Fitzpatrick S.G., Katz J. The association between periodontal disease and cancer: a review of the literature. J Dent 2010; 38(2):83–95. DOI: 10.1016/j.jdent.2009.10.007.
20. Meyer M.S., Joshipura K., Giovannucci E., Michaud D.S. A review of the relationship between toothloss, periodontal disease, and cancer. Cancer Causes Control 2008;19(9):895–907. DOI: 10.1007/s10552-008-9163-4.
21. Nagy K.N., Sonkodi I., Szöke I. et al. The microflora associated with human oral carcinomas. Oral Oncol 1998;34(4):304–8.
22. Mager D., Haffajee A., Devlin P. et al. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, nonrandomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 2005;3:27. DOI: 10.1186/1479-5876-3-27.
23. Sasaki M., Yamaura C., Ohara-Nemoto Y. et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 2005;11(3):151–6. DOI: 10.1111/j.1601-0825.2005.01051.x.
24. Shiga K., Tateda M., Saijo S. et al. Presence of Streptococcus infection in extraoropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001;8(2):245–8.
25. Narikiyo M., Tanabe C., Yamada Y et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci 2004;95(7):569–74. DOI: 10.1111/ j.1349-7006.2004.tb02488.x.
26. Sakamoto H., Naito H., Ohta Y. et al. Isolation of bacteria from cervical lymph nodes in patients with oral cancer. Arch Oral Biol 1999;44(10):789–93. DOI: 10.1016/s0003-9969(99)00079-5.
27. Zhang Y., Wang X., Li H. et al. Human oral microbiota and its modulation for oral health. Biomed Pharmacother 2018;99:883–93. DOI: 10.1016/j.biopha.2018.01.146.
28. Szkaradkiewicz A.K., Karpiński T.M. Microbiology of chronic periodontitis. J Biol Earth Sci 2013;3:M14–20.
29. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141(1):52–67. DOI: 10.1016/j.cell.2010.03.015.
30. Mao S., Park Y., Hasegawa Y. et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol 2007;9(8):1997–2007. DOI: 10.1111/j.1462-5822.2007.00931.x.
31. Yilmaz O., Jungas T., Verbeke P., Ojcius D.M. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 2004;72(7):3743–51. DOI: 10.1128/iai.72.7.3743-3751.2004.
32. Yao L., Jermanus C., Barbetta B. et al. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 2010;25:89–101. DOI: 10.1111/j.2041-1014.2010.00569.x.
33. Moffatt C.E., Lamont R.J. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 2011;79(7):2632–7. DOI: 10.1128/IAI.00082-11.
34. Uitto V.J., Baillie D., Wu Q. et al. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect Immun 2005;73(2):1171–9. DOI: 10.1128/IAI.73.2.1171-1179.200.
35. Rubinstein M.R., Wang X., Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206. DOI: 10.1016/j.chom.2013.07.012.
36. Baqui A., Meiller T.F., Chon J.J. et al. Granulocyte-macrophage colony-stimulating factor amplification of interleukin1b and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms. Clin Diagn Lab Immunol 1998;5:341–7.
37. Fischman S., Revach B., Bulvik R. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015;6(26):22613–23. DOI: 10.18632/oncotarget.4209.
38. Wu Y., Wu J., Chen T. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade. Dig Dis Sci 2018;63(5):1210–8. DOI: 10.1007/s10620-018-4999-2.
39. Bradley J.R. TNF-mediated inflammatory disease. J Pathol 2008;214(2):149–60. DOI: 10.1002/path.2287.
40. Szlosarek P., Charles K.A., Balkwill F.R. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 2006;42:745–50. DOI: 10.1016/j.ejca.2006.01.012.
41. Rivas M.A., Carnevale R.P., Proietti C.J. et al. TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways. Exp Cell Res 2008;314(3):509–629. DOI: 10.1016/j.yexcr.2007.10.005.
42. Yan B., Wang H., Rabbani Z.N. et al. Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006;66(24):11565–70. DOI: 10.1158/0008-5472.CAN-06-2540.
43. Leber T.M., Balkwill F.R. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF). Br J Cancer 1998;78(6):724–32. DOI: 10.1038/bjc.1998.568.
44. Yoshida S., Ono M., Shono T. et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 1997;17(7):4015–23. DOI: 10.1128/mcb.17.7.4015.
Head and Neck Tumors (HNT). 2020; 10: 74-85
Role of periodontal pathogens in carcinogenesis of squamous-cell carcinoma of the oral mucosa
Kazimov A. E., Mudunov A. M., Grigorievskaya Z. V., Zaderenko I. A., Alieva S. B., Bagirova N. S., Petukhova I. N., Tereshchenko I. V., Pak M. B.
https://doi.org/10.17650/2222-1468-2020-10-4-74-85Abstract
The study objective is to evaluate the effect of periodontal microorganisms on development of squamous-cell carcinoma of the oral mucosa and the risk of its recurrence.
Materials and methods. Microbiological study of biomaterials from 150 patients was performed. The study group included 100 patients with T3–T4 squamous-cell carcinoma of the oral mucosa and was subdivided into two subgroups with 50 patients in each. The control group included 50 patients.
Results. Analysis of the results obtained in the subgroup of primary patients showed the following trends: in 2 (50 %) of 4 patients with Fusobacterium spp., recurrence of the main disease was observed as well as a case of distant metastasis into the bones. Among 35 patients with Prevotella spp. in the biomaterials, in 16 (45.7 %) recurrence of the tumor was observed. Among 10 patients with Veillonella spp., recurrence was observed in 20 %. The most common aerobic microorganism was Streptococcus spр. Among patients who underwent treatment at the N.N. Blokhin National Medical Research Center of Oncology, recurrence was diagnosed in 28.5 %, distant metastases in 4.7 %. In the subgroup of repeat patients, the following trends were observed: among 27 patients with Fusobacterium spp., recurrence of the main disease was observed in 63 %. Among 26 patients with Prevotella spp. in the biomaterial, in 11 (42.3 %) local recurrence was observed. Among 24 patients with Veillonella spp., recurrence developed in 33.3 %. The most common aerobic microorganism was Streptococcus spр., recurrences developed in 21 % of cases.
References
1. Paches A.I. Opukholi golovy i shei. M., 2000. S. 460–480. [Paches A.I. Tumors of the head and neck. Moscow, 2000. Pp. 460–480. (In Russ.)].
2. Kropotov M.A., Matyakin E.G., Zheltova A.V., Dmitrieva N.V. Gnoinye oslozhneniya pri khirurgicheskom lechenii bol'nykh rakom polosti rta i ikh profilaktika. Antibiotiki i khimioterapiya 1999;(5):29–32.
3. Onkologicheskie zabolevaniya golovy i shei. Kniga 3. Uchebnoe posobie. Pod red. A.I. Novikova, Zh. Massarda. Omsk, 2008. 147 s.
4. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2012 g. Pod red. M.I. Davydova, E.M. Aksel'. M., 2014. 226 c.
5. Nieminen M.T., Listyarifah D., Hagström J. et al. Treponema denticola chymotrypsin like proteinase maycontribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer 2018;118(3):428–34. DOI: 10.1038/bjc.2017.409.
6. Matyakin E.G., Ivanov V.M., Ivanova O.V., Sheikin M.V. Khirurgicheskaya reabilitatsiya bol'nykh mestnorasprostranennym rakom slizistoi obolochki polosti rta. Infektsii v khirurgii 2013;11(4):40–3
7. Park S.Y., Kim M.S., Eom J.S. et al. Risk factors and etiology of surgical site infection after radical neck dissection in patients with head and neck cancer. Korean J Intern Med 2016;31(1):162–9. DOI: 10.3904/kjim.2016.31.1.162.
8. Hirakawa H., Hasegawa Y., Hanai N. et al. Surgical site infection in clean-contaminated head and neck cancer surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol 2013;270(3):1115–23. DOI: 10.1007/s00405-012-2128-y.
9. Grigor'evskaya Z.V., Petukhova I.N., Bagirova N.S. i dr. Nozokomial'nye infektsii u onkologicheskikh bol'nykh: problema narastayushcheĭ rezistentnosti gramotritsatel'nykh mikroorganizmov. Sibirskiĭ onkologicheskii zhurnal 2017;16(1):91–7.
10. Brook I., Hirokawa R. Microbiology of wound infection after head and neck cancer surgery. Ann Otol Rhinol Laryngol 1989;98(5 Pt 1):323–5. DOI: 10.1177/000348948909800501.
11. Karpiński T.M. Role of oral microbiota in cancer development. Microorganisms 2019;7(1):20. DOI: 10.3390/microorganisms7010020.
12. Hirakawa H., Hasegawa Y., Hanai N. et al. Surgical site infection in clean-contaminated head and neck cancer surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol 2013;270(3):1115–23. DOI: 10.1007/s00405-012-2128-y.
13. Belusic-Gobica M., Cara M., Juretica M. et al. Risk factors for wound infection after oral cancer surgery. Oral Oncol 2007;43(1):77–81. DOI: 10.1016/j.oraloncology.2006.01.006.
14. Human Oral Microbiome Database. Available at: http://www.homd.org/index.php.
15. Gao S., Li S., Ma Z. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinic opathological characteristics and survival in patients with esophageal cancer. Infect Agents Cancer 2016;11:3.
16. Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011;36(6):320–8. DOI: 10.1016/j.tibs.2011.03.006.
17. Yang S.H., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene 2013;513(1):1–13. DOI: 10.1016/j.gene.2012.10.033.
18. Mikhal'chenko D.V., Zhidovinov A.V. Retrospektivnyi analiz statisticheskikh dannykh zabolevaemosti zlokachestvennymi novoobrazovaniyami chelyustno-litsevoi lokalizatsii. Sovremennye problemy nauki i obrazovaniya 2016;(6)151.
19. Fitzpatrick S.G., Katz J. The association between periodontal disease and cancer: a review of the literature. J Dent 2010; 38(2):83–95. DOI: 10.1016/j.jdent.2009.10.007.
20. Meyer M.S., Joshipura K., Giovannucci E., Michaud D.S. A review of the relationship between toothloss, periodontal disease, and cancer. Cancer Causes Control 2008;19(9):895–907. DOI: 10.1007/s10552-008-9163-4.
21. Nagy K.N., Sonkodi I., Szöke I. et al. The microflora associated with human oral carcinomas. Oral Oncol 1998;34(4):304–8.
22. Mager D., Haffajee A., Devlin P. et al. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, nonrandomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 2005;3:27. DOI: 10.1186/1479-5876-3-27.
23. Sasaki M., Yamaura C., Ohara-Nemoto Y. et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 2005;11(3):151–6. DOI: 10.1111/j.1601-0825.2005.01051.x.
24. Shiga K., Tateda M., Saijo S. et al. Presence of Streptococcus infection in extraoropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001;8(2):245–8.
25. Narikiyo M., Tanabe C., Yamada Y et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci 2004;95(7):569–74. DOI: 10.1111/ j.1349-7006.2004.tb02488.x.
26. Sakamoto H., Naito H., Ohta Y. et al. Isolation of bacteria from cervical lymph nodes in patients with oral cancer. Arch Oral Biol 1999;44(10):789–93. DOI: 10.1016/s0003-9969(99)00079-5.
27. Zhang Y., Wang X., Li H. et al. Human oral microbiota and its modulation for oral health. Biomed Pharmacother 2018;99:883–93. DOI: 10.1016/j.biopha.2018.01.146.
28. Szkaradkiewicz A.K., Karpiński T.M. Microbiology of chronic periodontitis. J Biol Earth Sci 2013;3:M14–20.
29. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141(1):52–67. DOI: 10.1016/j.cell.2010.03.015.
30. Mao S., Park Y., Hasegawa Y. et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol 2007;9(8):1997–2007. DOI: 10.1111/j.1462-5822.2007.00931.x.
31. Yilmaz O., Jungas T., Verbeke P., Ojcius D.M. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 2004;72(7):3743–51. DOI: 10.1128/iai.72.7.3743-3751.2004.
32. Yao L., Jermanus C., Barbetta B. et al. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 2010;25:89–101. DOI: 10.1111/j.2041-1014.2010.00569.x.
33. Moffatt C.E., Lamont R.J. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 2011;79(7):2632–7. DOI: 10.1128/IAI.00082-11.
34. Uitto V.J., Baillie D., Wu Q. et al. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect Immun 2005;73(2):1171–9. DOI: 10.1128/IAI.73.2.1171-1179.200.
35. Rubinstein M.R., Wang X., Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206. DOI: 10.1016/j.chom.2013.07.012.
36. Baqui A., Meiller T.F., Chon J.J. et al. Granulocyte-macrophage colony-stimulating factor amplification of interleukin1b and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms. Clin Diagn Lab Immunol 1998;5:341–7.
37. Fischman S., Revach B., Bulvik R. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015;6(26):22613–23. DOI: 10.18632/oncotarget.4209.
38. Wu Y., Wu J., Chen T. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade. Dig Dis Sci 2018;63(5):1210–8. DOI: 10.1007/s10620-018-4999-2.
39. Bradley J.R. TNF-mediated inflammatory disease. J Pathol 2008;214(2):149–60. DOI: 10.1002/path.2287.
40. Szlosarek P., Charles K.A., Balkwill F.R. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 2006;42:745–50. DOI: 10.1016/j.ejca.2006.01.012.
41. Rivas M.A., Carnevale R.P., Proietti C.J. et al. TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways. Exp Cell Res 2008;314(3):509–629. DOI: 10.1016/j.yexcr.2007.10.005.
42. Yan B., Wang H., Rabbani Z.N. et al. Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006;66(24):11565–70. DOI: 10.1158/0008-5472.CAN-06-2540.
43. Leber T.M., Balkwill F.R. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF). Br J Cancer 1998;78(6):724–32. DOI: 10.1038/bjc.1998.568.
44. Yoshida S., Ono M., Shono T. et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 1997;17(7):4015–23. DOI: 10.1128/mcb.17.7.4015.
События
-
К платформе Elpub присоединился журнал «Научный журнал «Экономические системы» >>>
10 дек 2025 | 11:58 -
Журнал «Известия высших учебных заведений: Нефть и газ» принят в DOAJ >>>
9 дек 2025 | 11:58 -
К платформе Elpub присоединился журнал «Амурский медицинский журнал» >>>
26 ноя 2025 | 13:19 -
К платформе Elpub присоединился журнал «Актуальные вопросы лесного хозяйства» >>>
20 ноя 2025 | 13:18 -
Журнал «Вестник Самарского государственного экономического университета» теперь на Elpub >>>
11 ноя 2025 | 14:28
