Нервно-мышечные болезни. 2025; 15: 39-52
Оценка социально-эмоционального, когнитивного, коммуникативного развития и адаптивного поведения детей со спинальной мышечной атрофией 5q
Папина Ю. О., Заваденко Н. Н., Мельник Е. А., Артемьева С. Б., Бердалина И. А., Влодавец Д. В.
https://doi.org/10.17650/2222-8721-2025-15-1-39-52Аннотация
Введение. Спинальная мышечная атрофия 5q (СМА) – тяжелое наследственное нервно-мышечное заболевание, основным проявлением которого является мышечная слабость. Когнитивное развитие при естественном течении СМА ранее оценивалось как нормальное. Внедрение этиопатогенетической терапии привело к изменению траектории течения болезни, появлению новых фенотипов, увеличило выживаемость и подчеркнуло значимость исследований развития эмоциональной, когнитивной, коммуникативной сфер и адаптивного поведения у пациентов со СМА.
Цель исследования – провести комплексную оценку эмоциональной, когнитивной и адаптивной сфер, а также речевого развития у пациентов с генетически подтвержденным диагнозом СМА, включая случаи, выявленные по программе скрининга новорожденных, и не имеющих симптомов на момент начала этиопатогенетической терапии, определить факторы, влияющие на нервно-психическое развитие пациентов со СМА.
Материалы и методы. В исследование включено 87 пациентов со СМА в возрасте от 0 до 12 лет (медиана возраста на момент тестирования – 57,0 [37,0; 103,0] мес), получающих этиопатогенетическую терапию. Для оценки нервно-психического развития использовалась методика Developmental Profile 3 (DP-3). Статистический анализ проведен с применением программного пакета SPSS Statistics v.26.0 (IBM, США).
Результаты. У детей, получивших терапию на предсимптоматической стадии (6,9 % детей), не было снижения ни в одной из оцениваемых сфер развития и результаты значимо отличались от каждого из 3 типов СМА по субшкалам двигательных навыков (рadj <0,001) и адаптивного поведения (padj ≤0,026). Пациенты со СМА 1–3-го типа имели тяжелые двигательные нарушения (снижение при оценке двигательной сферы каждой из групп: 93,0; 89,7 и 88,9 % детей соответственно) и нарушения адаптивной сферы (снижение у ≥55 % в каждой из групп СМА 1–3-го типа). Пациенты со СМА 1-го типа помимо двигательных и адаптивных нарушений демонстрировали отставание в развитии в социально-эмоциональной (39,5 %), познавательной (30,2 %) и коммуникативной (39,5 %) сферах. Дети с более низким функциональным классом («лежачие») имели более значительное отставание в развитии в адаптивной, социальноэмоциональной и познавательной сферах (p ≤0,048). У пациентов в группе СМА 1-го типа малое число копий гена SMN2, ранний дебют коррелировали с более выраженными нарушениями эмоциональной, когнитивной и адаптивной сфер, а также речевого развития (с числом копий гена SMN2: р ≤0,034; с возрастом дебюта: р ≤0,012). Дети с клиническими симптомами СМА 1-го типа с нарушением глотания и дисфагией имели более низкие показатели по всем субшкалам, за исключением двигательных навыков (р ≤0,015). Дети с хронической дыхательной недостаточностью демонстрировали снижение показателей по каждой из 5 оцениваемых субшкал: в группе СМА 1-го типа хуже были двигательные навыки, адаптивная, социально-эмоциональная, познавательная сферы (р ≤0,045), в группе СМА 2-го типа – адаптивная, социально-эмоциональная, познавательная сферы (р ≤0,018). Задержка старта терапии в последующем ассоциирована с более низкими показателями двигательных навыков и адаптивного поведения при СМА 1 (р ≤0,012), 2 (р ≤0,002) и 3-го типа (р ≤0,048), а для СМА 2-го типа также с более низкими показателями социально-эмоциональной и познавательной сфер (р = 0,001).
Выводы. Пациенты со СМА, помимо двигательных нарушений, имеют нарушения адаптации, социализации, а также отставание в развитии коммуникативной и познавательной сфер. Требуется стандартизированный подход к выявлению данных нарушений и разработка адаптированных методик восстановления и реабилитации. Инициация этиопатогенетической терапии на предсимптоматической стадии обеспечит профилактику нейропсихических проявлений СМА.
Список литературы
1. D’Amico A., Mercuri E., Tiziano F.D. et al. Spinal muscular atrophy. Orphanet J Rare Dis 2011;6:71. DOI: 10.1186/1750-1172-6-71
2. Wishart T.M., Huang J.P., Murray L.M. et al. SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2010;19(21):4216–28. DOI: 10.1093/hmg/ddq340
3. Ruggiu M., McGovern V.L., Lotti F. et al. A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 2012;32(1):126–38. DOI: 10.1128/MCB.06077-11
4. Ling K.K., Lin M.Y., Zingg B. et al. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 2010;5(11):e15457. DOI: 10.1371/journal.pone.0015457
5. Инструкция по медицинскому применению лекарственного препарата Рисдиплам. Регистрационный номер ЛП-006602. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=914f5329-4619-411d-952b-1e5f05b91243.
6. Инструкция по медицинскому применению лекарственного препарата Нусинерсен. Регистрационный номер ЛП-(005730) Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=898d0ebf-292c-4e82-8a88-e7027e1ee392.
7. Инструкция по медицинскому применению лекарственного препарата Онасемноген абепарвовек. Регистрационный номер ЛП-(001462)-(РГ-RU). Доступно по: https://grls.minzdrav.gov.ru/Grls_View_v2.aspx?routingGuid=ec6cd7e2-6be5-4d03-8a71-9cca5b2e8cc7.
8. Wirth B., Karakaya M., Kye M.J. et al. Twenty-five years of spinal muscular atrophy research: From phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 2020;21:231–61. DOI: 10.1146/annurev-genom-102319-103602
9. Tizzano E.F., Finkel R.S. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscul Disord 2017;27(10):883–9. DOI: 10.1016/j.nmd.2017.05.011
10. Папина Ю.О., Мельник Е.А., Белоусова Е.Д. и др. Определение критериев функционального класса у пациентов со спинальной мышечной атрофией 5q. Нервно-мышечные болезни 2024;14(4):58–70. DOI: 10.17650/2222-8721-2024-14-4-58-70
11. Motyl A.A.L., Gillingwater T.H. Timing is everything: Clinical evidence supports pre-symptomatic treatment for spinal muscular atrophy. Cell Rep Med 2022;3(8):100725. DOI: 10.1016/j.xcrm.2022.100725
12. Vill K., Schwartz O., Blaschek A. et al. Newborn screening for spinal muscular atrophy in Germany: Сlinical results after 2 years. Orphanet J Rare Dis 2021;16(1):153. DOI: 10.1186/s13023-021-01783-8
13. Masson R, Brusa C, Scoto M. et al. Brain, cognition, and language development in spinal muscular atrophy type 1: A scoping review. Dev Med Child Neurol 2021;63(5):527–36. DOI: 10.1111/dmcn.14798
14. Haché M., Swoboda K.J., Sethna N. et al. Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. J Child Neurol 2016;31(7):899–906. DOI: 10.1177/0883073815627882
15. Zappa G., LoMauro A., Baranello G. et al. Intellectual abilities, language comprehension, speech, and motor function in children with spinal muscular atrophy type 1. J Neurodev Disord 2021;13(1):9. DOI: 10.1186/s11689-021-09355-4
16. Ball L.J., Chavez S., Perez G. et al. Communication skills among children with spinal muscular atrophy type 1: A parent survey. Assist Technol 2021;33(1):38–48. DOI: 10.1080/10400435.2019.1586788
17. Mix L., Schreiber-Katz O., Wurster C.D. et al. Executive function is inversely correlated with physical function: the cognitive profile of adult spinal muscular atrophy (SMA). Orphanet J Rare Dis 2021;16(1):10. DOI: 10.1186/s13023-020-01661-9
18. Kizina K., Akkaya Y., Jokisch D. et al. Cognitive impairment in adult patients with 5q-associated spinal muscular atrophy. Brain Sci 2021;11(9):1184. DOI: 10.3390/brainsci11091184
19. Von Gontard A., Zerres K., Backes M. et al. Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscul Disord 2002;12(2):130–6. DOI: 10.1016/s0960-8966(01)00274-7
20. Giannotta G., Ruggiero M., De Rinaldis M. et al. Exploring variability in cognitive functioning in patients with spinal muscular atrophy: A scoping review. Neurol Sci 2024;45(8):3699–710. DOI: 10.1007/s10072-024-07503-x
21. Akodad S., De Smedt D., Baijot S. et al. Cognition and communication in patients with spinal muscular atrophy: A systematic review. Heliyon 2024;10(13):e33677. DOI: 10.1016/j.heliyon.2024.e33677
22. Yang H., Yang J., Xue Y. et al. Cognitive impairment in children with 5q-associated spinal muscular atrophy type 1: Two case reports and the review of the literature. Front Pediatr 2024;12:1407341. DOI: 10.3389/fped.2024.1407341
23. Steffens P., Weiss D., Perez A. et al. Cognitive function in SMA patients with 2 or 3 SMN2 copies treated with SMN-modifying or gene addition therapy during the first year of life. Eur J Paediatr Neurol 2024;51:17–23. DOI: 10.1016/j.ejpn.2024.05.002
24. Polido G.J., de Miranda M.M.V., Carvas N. et al. Cognitive performance of children with spinal muscular atrophy: A systematic review. Dement Neuropsychol 2019;13(4):436–43. DOI: 10.1590/1980-57642018dn13-040011
25. Pane M., Palermo C., Messina S. et al. Nusinersen in type 1 SMA infants, children and young adults: Preliminary results on motor function. Neuromuscul Disord 2018;28(7):582–5. DOI: 10.1016/j.nmd.2018.05.010
26. Ngawa M., Dal Farra F., Marinescu A.D. et al. Longitudinal developmental profile of newborns and toddlers treated for spinal muscular atrophy. Ther Adv Neurol Disord 2023;16:17562864231154335. DOI: 10.1177/17562864231154335
27. Cuscó I., Bernal S., Blasco-Pérez L. et al. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. Neurol Genet 2020;6(6):e530. DOI: 10.1212/NXG.0000000000000530
28. Calucho M., Bernal S., Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018;28(3):208–15. DOI: 10.1016/j.nmd.2018.01.003
29. Abiusi E., Costa-Roger M., Bertini E.S. et al. 270th ENMC International Workshop: Consensus for SMN2 genetic analysis in SMA patients 10–12 March, 2023, Hoofddorp, the Netherlands. Neuromuscul Disord 2024;34:114–22. DOI: 10.1016/j.nmd.2023.12.008
30. Rouzier C., Chaussenot A., Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch Pediatr 2020;27(7S):7S9–14. DOI: 10.1016/S0929-693X(20)30270-0
31. Ахкямова М.А., Щагина О.А., Поляков А.В. Факторы, модифицирующие течение спинальной мышечной атрофии 5q. Нервно-мышечные болезни 2023;13(4):62–73. DOI: 10.17650/2222-8721-2023-13-4-62-73
32. Hoskens J., Klingels K., Smits-Engelsman B. Validity and crosscultural differences of the Bayley Scales of Infant and Toddler Development, Third Edition in typically developing infants. Early Hum Dev 2018;125:17–25. DOI: 10.1016/j.earlhumdev.2018.07.002
33. Kölbel H., Kopka M., Modler L. et al. Impaired neurodevelopment in children with 5q-SMA – 2 years after newborn screening. J Neuromuscul Dis 2024;11(1):143–51. DOI: 10.3233/JND-230136
34. Bremner D., McTaggart B., Saklofske D. et al. WISC-IV GAI and CPI in psychoeducational assessment. Can J Sch Psychol 2011;26(3):209–19. DOI: 10.1177/0829573511419090
35. Soliman R., Rashed H.R., Moustafa R.R. et al. Egyptian adaptation and validation of the Edinburgh Cognitive and Behavioral Amyotrophic Lateral Sclerosis Screen (ECAS-EG). Neurol Sci 2023;44(6):1871–80. DOI: 10.1007/s10072-023-06639-6
36. Osmanovic A., Wieselmann G., Mix L. et al. Cognitive performance of patients with adult 5q-spinal muscular atrophy and with amyotrophic lateral sclerosis. Brain Sci 2020;11(1):8. DOI: 10.3390/brainsci11010008
37. Vidovic M., Freigang M., Aust E. et al. Cognitive performance of adult patients with SMA before and after treatment initiation with nusinersen. BMC Neurol 2023;23(1):216. DOI: 10.1186/s12883-023-03261-z
38. Alpern G.D. Developmental Profile 3, DP-3 Manual. Los Angeles: Western Psychological Services, 2009. P. 195.
39. WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: Windows of achievement for six gross motor development milestones. Acta Paediatr Suppl 2006;450:86–95. DOI: 10.1111/j.1651-2227.2006.tb02379.x
40. Клинические рекомендации «Проксимальная спинальная мышечная атрофия 5q. Дети». 2023–2025. Доступно по: https://cr.minzdrav.gov.ru/schema/593_3.
41. Glanzman A.M., McDermott M.P., Montes J. et al. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 2011;23(4):322–6. DOI: 10.1097/PEP.0b013e3182351f04
42. Pera M.C., Coratti G., Forcina N. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017;17(1):39. DOI: 10.1186/s12883-017-0790-9
43. Mazzone E.S., Mayhew A., Montes J. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017;55(6):869–74. DOI: 10.1002/mus.25430
44. Finkel R.S., Mercuri E., Darras B.T. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377(18):1723–32. DOI: 10.1056/NEJMoa1702752
45. Strauss K.A., Farrar M.A., Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: The phase III SPR1NT trial. Nat Med 2022;28(7):1390–7. DOI: 10.1038/s41591-022-01867-3
46. Glascock J., Sampson J., Haidet-Phillips A. et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 2018;5(2):145–58. DOI: 10.3233/JND-180304
47. Dangouloff T., Vrščaj E., Servais L. et al. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go. Neuromuscul Disord 2021;31(6):574–82. DOI: 10.1016/j.nmd.2021.03.007
48. Coratti G., Cutrona C., Pera M.C. et al. Motor function in type 2 and 3 SMA patients treated with nusinersen: A critical review and meta-analysis. Orphanet J Rare Dis 2021;16(1):430. DOI: 10.1186/s13023-021-02065-z
Neuromuscular Diseases. 2025; 15: 39-52
Assessment of social emotional, cognitive and communicative development and adaptive behavior in children with spinal muscular atrophy 5q
Papina Yu. O., Zavadenko N. N., Melnik E. A., Artemyeva S. B., Berdalina I. A., Vlodavets D. V.
https://doi.org/10.17650/2222-8721-2025-15-1-39-52Abstract
Background. Spinal muscular atrophy 5q (SMA) is a severe genetic neuromuscular disorder, which is primarily manifested through musclar weakness. Previously, cognitive development in the natural course of SMA was considered normal. The introduction of etiopathogenetic therapy has altered the disease trajectory, led to new phenotypes, improved survival rates, and outlined the importance of studying the development of emotional, cognitive, and communicative domains, and adaptive behavior in SMA patients.
Aim. To conduct a comprehensive assessment of emotional, cognitive, and adaptive domains, as well as speech development, in patients with genetically confirmed SMA, including cases, which were identified through newborn screening programs and were asymptomatic at the initiation of etiopathogenetic therapy, and to identify factors influencing neuropsychic development in SMA patients.
Materials and methods. The study included 87 SMA patients receiving etiopathogenetic therapy, aged 0–12 years (median age at testing – 57.0 [37.0; 103.0] months). The Developmental Profile-3 (DP-3) instrument was used to assess neuropsychic development. Statistical analysis was performed using SPSS Statistics v.26.0 (IBM, USA).
Results. Children who received therapy at the presymptomatic stage (6.9 % of the cohort) showed no deficits in any assessed developmental domains. These results significantly differed from those of SMA types 1, 2, and 3 in motor skills (padj <0.001) and adaptive behavior (padj ≤0.026). Patients with SMA types 1, 2, and 3 exhibited severe motor impairments (reduced motor skills in 93.0 %, 89.7 %, and 88.9 % of children, respectively) and adaptive deficits (impairments in ≥55 % of each group). SMA type 1 patients additionally demonstrated delays in social emotional (39.5 %), cognitive (30.2 %), and communicative (39.5 %) domains. Children with lower functional status (“lying”) had more pronounced delays in adaptive, social emotional, and cognitive domains (p ≤0.048). In SMA type 1, fewer SMN2 gene copies and earlier disease onset correlated with more severe deficits in emotional, cognitive, and adaptive domains, as well as in speech development (SMN2 copies: p ≤0.034; age of onset: p ≤0.012). SMA type 1 patients with dysphagia showed lower scores across all subscales except motor skills (p ≤0.015). Chronic respiratory insufficiency was associated with reduced scores in all five subscales: in SMA type 1, motor skills, adaptive, social emotional, and cognitive domains were affected (p ≤0.045); in SMA type 2, adaptive, social emotional, and cognitive domains were affected (p ≤0.018). Delayed therapy initiation correlated with lower motor and adaptive scores in SMA types 1 (p ≤0.012), 2 (p ≤0.002), and 3 (p ≤0.048), and with worse social emotional and cognitive outcomes in SMA type 2 (p = 0.001).
Conclusion. SMA patients exhibit not only motor impairments but also adaptive and socialization deficits, as well as delays in communicative and cognitive development. A standardized approach to identifying these impairments should be developed, and developing tailored rehabilitation methods is important as well. Initiating etiopathogenetic therapy at the presymptomatic stage may prevent neuropsychiatric manifestations of SMA.
References
1. D’Amico A., Mercuri E., Tiziano F.D. et al. Spinal muscular atrophy. Orphanet J Rare Dis 2011;6:71. DOI: 10.1186/1750-1172-6-71
2. Wishart T.M., Huang J.P., Murray L.M. et al. SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2010;19(21):4216–28. DOI: 10.1093/hmg/ddq340
3. Ruggiu M., McGovern V.L., Lotti F. et al. A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 2012;32(1):126–38. DOI: 10.1128/MCB.06077-11
4. Ling K.K., Lin M.Y., Zingg B. et al. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 2010;5(11):e15457. DOI: 10.1371/journal.pone.0015457
5. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Risdiplam. Registratsionnyi nomer LP-006602. Dostupno po: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=914f5329-4619-411d-952b-1e5f05b91243.
6. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Nusinersen. Registratsionnyi nomer LP-(005730) Dostupno po: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=898d0ebf-292c-4e82-8a88-e7027e1ee392.
7. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata Onasemnogen abeparvovek. Registratsionnyi nomer LP-(001462)-(RG-RU). Dostupno po: https://grls.minzdrav.gov.ru/Grls_View_v2.aspx?routingGuid=ec6cd7e2-6be5-4d03-8a71-9cca5b2e8cc7.
8. Wirth B., Karakaya M., Kye M.J. et al. Twenty-five years of spinal muscular atrophy research: From phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 2020;21:231–61. DOI: 10.1146/annurev-genom-102319-103602
9. Tizzano E.F., Finkel R.S. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscul Disord 2017;27(10):883–9. DOI: 10.1016/j.nmd.2017.05.011
10. Papina Yu.O., Mel'nik E.A., Belousova E.D. i dr. Opredelenie kriteriev funktsional'nogo klassa u patsientov so spinal'noi myshechnoi atrofiei 5q. Nervno-myshechnye bolezni 2024;14(4):58–70. DOI: 10.17650/2222-8721-2024-14-4-58-70
11. Motyl A.A.L., Gillingwater T.H. Timing is everything: Clinical evidence supports pre-symptomatic treatment for spinal muscular atrophy. Cell Rep Med 2022;3(8):100725. DOI: 10.1016/j.xcrm.2022.100725
12. Vill K., Schwartz O., Blaschek A. et al. Newborn screening for spinal muscular atrophy in Germany: Slinical results after 2 years. Orphanet J Rare Dis 2021;16(1):153. DOI: 10.1186/s13023-021-01783-8
13. Masson R, Brusa C, Scoto M. et al. Brain, cognition, and language development in spinal muscular atrophy type 1: A scoping review. Dev Med Child Neurol 2021;63(5):527–36. DOI: 10.1111/dmcn.14798
14. Haché M., Swoboda K.J., Sethna N. et al. Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. J Child Neurol 2016;31(7):899–906. DOI: 10.1177/0883073815627882
15. Zappa G., LoMauro A., Baranello G. et al. Intellectual abilities, language comprehension, speech, and motor function in children with spinal muscular atrophy type 1. J Neurodev Disord 2021;13(1):9. DOI: 10.1186/s11689-021-09355-4
16. Ball L.J., Chavez S., Perez G. et al. Communication skills among children with spinal muscular atrophy type 1: A parent survey. Assist Technol 2021;33(1):38–48. DOI: 10.1080/10400435.2019.1586788
17. Mix L., Schreiber-Katz O., Wurster C.D. et al. Executive function is inversely correlated with physical function: the cognitive profile of adult spinal muscular atrophy (SMA). Orphanet J Rare Dis 2021;16(1):10. DOI: 10.1186/s13023-020-01661-9
18. Kizina K., Akkaya Y., Jokisch D. et al. Cognitive impairment in adult patients with 5q-associated spinal muscular atrophy. Brain Sci 2021;11(9):1184. DOI: 10.3390/brainsci11091184
19. Von Gontard A., Zerres K., Backes M. et al. Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscul Disord 2002;12(2):130–6. DOI: 10.1016/s0960-8966(01)00274-7
20. Giannotta G., Ruggiero M., De Rinaldis M. et al. Exploring variability in cognitive functioning in patients with spinal muscular atrophy: A scoping review. Neurol Sci 2024;45(8):3699–710. DOI: 10.1007/s10072-024-07503-x
21. Akodad S., De Smedt D., Baijot S. et al. Cognition and communication in patients with spinal muscular atrophy: A systematic review. Heliyon 2024;10(13):e33677. DOI: 10.1016/j.heliyon.2024.e33677
22. Yang H., Yang J., Xue Y. et al. Cognitive impairment in children with 5q-associated spinal muscular atrophy type 1: Two case reports and the review of the literature. Front Pediatr 2024;12:1407341. DOI: 10.3389/fped.2024.1407341
23. Steffens P., Weiss D., Perez A. et al. Cognitive function in SMA patients with 2 or 3 SMN2 copies treated with SMN-modifying or gene addition therapy during the first year of life. Eur J Paediatr Neurol 2024;51:17–23. DOI: 10.1016/j.ejpn.2024.05.002
24. Polido G.J., de Miranda M.M.V., Carvas N. et al. Cognitive performance of children with spinal muscular atrophy: A systematic review. Dement Neuropsychol 2019;13(4):436–43. DOI: 10.1590/1980-57642018dn13-040011
25. Pane M., Palermo C., Messina S. et al. Nusinersen in type 1 SMA infants, children and young adults: Preliminary results on motor function. Neuromuscul Disord 2018;28(7):582–5. DOI: 10.1016/j.nmd.2018.05.010
26. Ngawa M., Dal Farra F., Marinescu A.D. et al. Longitudinal developmental profile of newborns and toddlers treated for spinal muscular atrophy. Ther Adv Neurol Disord 2023;16:17562864231154335. DOI: 10.1177/17562864231154335
27. Cuscó I., Bernal S., Blasco-Pérez L. et al. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. Neurol Genet 2020;6(6):e530. DOI: 10.1212/NXG.0000000000000530
28. Calucho M., Bernal S., Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018;28(3):208–15. DOI: 10.1016/j.nmd.2018.01.003
29. Abiusi E., Costa-Roger M., Bertini E.S. et al. 270th ENMC International Workshop: Consensus for SMN2 genetic analysis in SMA patients 10–12 March, 2023, Hoofddorp, the Netherlands. Neuromuscul Disord 2024;34:114–22. DOI: 10.1016/j.nmd.2023.12.008
30. Rouzier C., Chaussenot A., Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch Pediatr 2020;27(7S):7S9–14. DOI: 10.1016/S0929-693X(20)30270-0
31. Akhkyamova M.A., Shchagina O.A., Polyakov A.V. Faktory, modifitsiruyushchie techenie spinal'noi myshechnoi atrofii 5q. Nervno-myshechnye bolezni 2023;13(4):62–73. DOI: 10.17650/2222-8721-2023-13-4-62-73
32. Hoskens J., Klingels K., Smits-Engelsman B. Validity and crosscultural differences of the Bayley Scales of Infant and Toddler Development, Third Edition in typically developing infants. Early Hum Dev 2018;125:17–25. DOI: 10.1016/j.earlhumdev.2018.07.002
33. Kölbel H., Kopka M., Modler L. et al. Impaired neurodevelopment in children with 5q-SMA – 2 years after newborn screening. J Neuromuscul Dis 2024;11(1):143–51. DOI: 10.3233/JND-230136
34. Bremner D., McTaggart B., Saklofske D. et al. WISC-IV GAI and CPI in psychoeducational assessment. Can J Sch Psychol 2011;26(3):209–19. DOI: 10.1177/0829573511419090
35. Soliman R., Rashed H.R., Moustafa R.R. et al. Egyptian adaptation and validation of the Edinburgh Cognitive and Behavioral Amyotrophic Lateral Sclerosis Screen (ECAS-EG). Neurol Sci 2023;44(6):1871–80. DOI: 10.1007/s10072-023-06639-6
36. Osmanovic A., Wieselmann G., Mix L. et al. Cognitive performance of patients with adult 5q-spinal muscular atrophy and with amyotrophic lateral sclerosis. Brain Sci 2020;11(1):8. DOI: 10.3390/brainsci11010008
37. Vidovic M., Freigang M., Aust E. et al. Cognitive performance of adult patients with SMA before and after treatment initiation with nusinersen. BMC Neurol 2023;23(1):216. DOI: 10.1186/s12883-023-03261-z
38. Alpern G.D. Developmental Profile 3, DP-3 Manual. Los Angeles: Western Psychological Services, 2009. P. 195.
39. WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: Windows of achievement for six gross motor development milestones. Acta Paediatr Suppl 2006;450:86–95. DOI: 10.1111/j.1651-2227.2006.tb02379.x
40. Klinicheskie rekomendatsii «Proksimal'naya spinal'naya myshechnaya atrofiya 5q. Deti». 2023–2025. Dostupno po: https://cr.minzdrav.gov.ru/schema/593_3.
41. Glanzman A.M., McDermott M.P., Montes J. et al. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 2011;23(4):322–6. DOI: 10.1097/PEP.0b013e3182351f04
42. Pera M.C., Coratti G., Forcina N. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017;17(1):39. DOI: 10.1186/s12883-017-0790-9
43. Mazzone E.S., Mayhew A., Montes J. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017;55(6):869–74. DOI: 10.1002/mus.25430
44. Finkel R.S., Mercuri E., Darras B.T. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377(18):1723–32. DOI: 10.1056/NEJMoa1702752
45. Strauss K.A., Farrar M.A., Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: The phase III SPR1NT trial. Nat Med 2022;28(7):1390–7. DOI: 10.1038/s41591-022-01867-3
46. Glascock J., Sampson J., Haidet-Phillips A. et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 2018;5(2):145–58. DOI: 10.3233/JND-180304
47. Dangouloff T., Vrščaj E., Servais L. et al. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go. Neuromuscul Disord 2021;31(6):574–82. DOI: 10.1016/j.nmd.2021.03.007
48. Coratti G., Cutrona C., Pera M.C. et al. Motor function in type 2 and 3 SMA patients treated with nusinersen: A critical review and meta-analysis. Orphanet J Rare Dis 2021;16(1):430. DOI: 10.1186/s13023-021-02065-z
События
-
К платформе Elpub присоединился журнал «Научный журнал «Экономические системы» >>>
10 дек 2025 | 11:58 -
Журнал «Известия высших учебных заведений: Нефть и газ» принят в DOAJ >>>
9 дек 2025 | 11:58 -
К платформе Elpub присоединился журнал «Амурский медицинский журнал» >>>
26 ноя 2025 | 13:19 -
К платформе Elpub присоединился журнал «Актуальные вопросы лесного хозяйства» >>>
20 ноя 2025 | 13:18 -
Журнал «Вестник Самарского государственного экономического университета» теперь на Elpub >>>
11 ноя 2025 | 14:28
