Журналов:     Статей:        

Нервно-мышечные болезни. 2023; 13: 74‑82

Наследственные спастические параплегии

Кутлубаева Р. Ф., Кутлубаев М. А., Магжанов Р. В., Сайфуллина Е. В., Хидиятова И. М.

https://doi.org/10.17650/2222-8721-2023-13-4-74-82

Аннотация

Наследственные спастические параплегии – группа нейродегенеративных заболеваний с преимущественным поражением кортикоспинального тракта, которые проявляются выраженной спастичностью и снижением силы в мышцах нижних конечностей. По клиническим проявлениям выделяют неосложненные (классические) и осложненные формы, по типу наследования – аутосомно-доминантные, аутосомно-рецессивные и Х-сцепленные. Механизмы развития наследственных спастических параплегий зависят от формы заболевания и связаны с мисфолдингом белков в эндоплазматическом ретикулуме, митохондриальной дисфункцией, нарушением метаболизма холестерина и проч. Диагноз наследственных спастических параплегий устанавливается при наличии характерных клинико-анамнестических данных, при исключении других заболеваний центральной нервной системы и подтверждается молекулярно-генетическими методами. Лечение наследственных спастических параплегий симптоматическое.

Список литературы

1. Murala S., Nagarajan E., Bollu P.C. Hereditary spastic paraplegia. Neurol Sci 2021;42(3):883–94. DOI: 10.1007/s10072-020-04981-7

2. Магжанов Р.В., Сайфуллина Е.В., Идрисова Р.Ф. и др. Эпидемиологическая характеристика наследственных спастических параплегий в Республике Башкортостан. Медицинская генетика 2013;(7):12–6.

3. Руденская Г.Е., Кадникова В.А., Рыжкова О.П. Распространенные формы наследственных спастических параплегий. Журнал неврологии и психиатрии им. С.С. Корсакова 2019;119(2):94–104. DOI: 10.17116/jnevro201911902194

4. De Souza P.V.S., de Rezende Pinto W.B.V., de Rezende Batistella G.N. et al. Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum 2017;16(2):525–51. DOI: 10.1007/s12311-016-0803-z

5. Lo Giudice T., Lombardi F., Santorelli F.M. et al. Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014;261:518–39. DOI: 10.1016/j.expneurol.2014.06.011

6. Koh K., Ishiura H., Tsuji S., Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain Sci 2018;8(8):153. DOI: 10.3390/brainsci8080153

7. Fink J.K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013;126(3):307–28. DOI: 10.1007/s00401-013-1115-8

8. Novarino G., Fenstermaker A.G., Zaki M.S. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 2014;343(6170):506–11. DOI: 10.1126/science.1247363

9. Klebe S., Stevanin G., Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: From SPG1 to SPG72 and still counting. Rev Neurol 2015;171(6–7):505–30. DOI: 10.1016/j.neurol.2015.02.017

10. Loureiro J.L., Brandão E., Ruano L. et al. Autosomal dominant spastic paraplegias: A review of 89 families resulting from a Portuguese survey. JAMA Neurol 2013;70(4):481–7. DOI: 10.1001/jamaneurol.2013.1956

11. Fourtassi M., Jacquin-Courtois S., Scheiber-Nogueira M.C. et al. Bladder dysfunction in hereditary spastic paraplegia: A clinical and urodynamic evaluation. Spinal Cord 2012;50(7):558–62. DOI: 10.1038/sc.2011.193

12. Hedera P., Eldevik O.P., Maly P. et al. Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 2005;47(10):730–4. DOI: 10.1007/s00234-005-1415-3

13. França M.C.Jr., D’Abreu A., Maurer-Morelli C.V. et al. Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 2007;22(11):1556–62. DOI: 10.1002/mds.21480

14. Suzuki S.O., Iwaki T., Arakawa K. et al. An autopsy case of adultonset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 2011;122(6):775–81. DOI: 10.1007/s00401-011-0916-x

15. Pérez-Brangulí F., Mishra H.K., Prots I. et al. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014;23(18):4859–74. DOI: 10.1093/hmg/ddu200

16. Mackay-Sim A. Hereditary spastic paraplegia: from genes, cells and networks to novel pathways for drug discovery. Brain Sci 2021;11(3):403. DOI: 10.3390/brainsci11030403

17. Zhu P.P., Denton K.R., Pierson T.M. et al. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet 2014;23(21):5638–48. DOI: 10.1093/hmg/ddu280

18. Park S.H., Zhu P.P., Parker R.L., Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 2010;120(4):1097–110. DOI: 10.1172/JCI40979

19. Tsang H.T., Edwards T.L., Wang X. et al. The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 2009;18(20):3805–21. DOI: 10.1093/hmg/ddp324

20. Mishra H.K., Prots I., Havlicek S. et al. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann Neurol 2016;79(5):826–40. DOI: 10.1002/ana.24633

21. Wali G., Kumar K.R., Liyanage E. et al. Mitochondrial function in hereditary spastic paraplegia: Deficits in SPG7 but not SPAST patient-derived stem cells. Front Neurosci 2020;14:820. DOI: 10.3389/fnins.2020.00820

22. Hansen J., Corydon T.J., Palmfeldt J. et al. Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 2008;153(2):474–82. DOI: 10.1016/j.neuroscience.2008.01.070

23. Denton K., Mou Y., Xu C.C. et al. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2018;27(14):2517–30. DOI: 10.1093/hmg/ddy156

24. Schulman I.G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017;591(19):2978–91. DOI: 10.1002/1873-3468.12702

25. Shribman S., Reid E., Crosby A.H. et al. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019;18(12):1136–46. DOI: 10.1016/S1474-4422(19)30235-2

26. Pascual B., de Bot S.T., Daniels M.R. et al. “Ears of the lynx” MRI sign is associated with SPG11 and SPG15 hereditary spastic paraplegia. AJNR Am J Neuroradiol 2019;40(1):199–203. DOI: 10.3174/ajnr.A5935

27. Hobson G.M., Garbern J.Y. Pelizaeus–Merzbacher disease, Pelizaeus–Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 2012;32(1):62–7. DOI: 10.1055/s-0032-1306388

28. Ахметгалеева А.Ф. Хидиятова И.М., Сайфуллина Е.В. и др. Две новые мутации в гене SPG4 у пациентов с аутосомно-доминантной спастической параплегией. Генетика 2016;52(6):603–7. DOI: 10.7868/S0016675816060023

29. Ахметгалеева А.Ф., Хидиятова И.М., Сайфуллина Е.В. и др. Клинический случай спорадической спастической параплегии при новой мутации в гене SPAST. Медицинская генетика 2016;15(7):11–3. DOI: 10.1234/XXXX-XXXX-2016-7-11-13

30. Хидиятова И.М., Сайфуллина Е.В., Карунас А.С. и др. Анализ мутаций гена ATL1 и клинических особенностей течения заболевания у пациентов с наследственной спастической параплегией. Генетика 2022;58(9):1085–93. DOI: 10.31857/S0016675822090119

31. Хидиятова И.М., Ахметгалеева А.Ф., Сайфуллина Е.В. и др. Мажорная мутация в гене SPAST у пациентов с аутосомнодоминантной спастической параплегией из Республики Башкортостан. Генетика 2019;55(2):229–33. DOI: 10.1134/S0016675819020103

32. Margetis K., Korfias S., Boutos N. et al. Intrathecal baclofen therapy for the symptomatic treatment of hereditary spastic paraplegia. Clin Neurol Neurosurg 2014;123:142–5. DOI: 10.1016/j.clineuro.2014.05.024

33. De Niet M., de Bot S.T., van de Warrenburg B.P. et al. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: A study in patients with hereditary spastic paraplegia. J Rehabil Med 2015;47(2):147–53. DOI: 10.2340/16501977-1909

34. Béreau M., Anheim M., Chanson J.B. et al. Dalfampridine in hereditary spastic paraplegia: A prospective, open study. J Neurol 2015;262(5):1285–8. DOI: 10.1007/s00415-015-7707-6

35. Schöls L., Rattay T.W., Martus P. et al. Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial. Brain 2017;140(12):3112–27. DOI: 10.1093/brain/awx273

36. Boutry M., Morais S., Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 2019;19(4):18. DOI: 10.1007/s11910-019-0930-2

37. Julien C., Lissouba A., Madabattula S. et al. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet 2016;25(6):1088–99. DOI: 10.1093/hmg/ddv632

38. Napoli B., Gumeni S., Forgiarini A. et al. Naringenin ameliorates drosophila ReepA hereditary spastic paraplegia-linked phenotypes. Front Neurosci 2019;13:1202. DOI: 10.3389/fnins.2019.01202

39. Иллариошкин С.Н., Руденская Г.Е., Иванова-Смоленская И.А. и др. Наследственные атаксии и параплегии. М., 2006. 415 с.

40. Panza E., Meyyazhagan A., Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022;357:114203. DOI: 10.1016/j.expneurol.2022.114203

41. Meyyazhagan A., Kuchi Bhotla H., Pappuswamy M., Orlacchio A. The puzzle of hereditary spastic paraplegia: From epidemiology to treatment. Int J Mol Sci 2022;23(14):7665. DOI: 10.3390/ijms23147665

Neuromuscular Diseases. 2023; 13: 74‑82

Hereditary spastic paraplegias

Kutlubaeva R. F., Kutlubaev M. A., Magzhanov R. V., Sayfullina E. V., Khidiyatova I. M.

https://doi.org/10.17650/2222-8721-2023-13-4-74-82

Abstract

Hereditary spastic paraplegias represent a group of hereditary neurodegenerative disorders predominantly affecting corticospinal tracts which manifest with prominent spasticity and reduced power in the muscles of the lower limbs. According to clinical signs hereditary spastic paraplegias are divided into uncomplicated (classic) and complicated forms, according to the nature of inheritance – into autosomal dominant, autosomal recessive and X-linked. Mechanisms of the development of hereditary spastic paraplegias depend on the form and could be associated with misfolding of the proteins in endoplasmatic reticulum, mitochondrial dysfunction, changes in the cholesterol metabolism etc. Diagnosis is made after exclusion of other disorders of the central nervous system and could be confirmed by molecular genetic methods. Treatment of hereditary spastic paraplegias is symptomatic.

References

1. Murala S., Nagarajan E., Bollu P.C. Hereditary spastic paraplegia. Neurol Sci 2021;42(3):883–94. DOI: 10.1007/s10072-020-04981-7

2. Magzhanov R.V., Saifullina E.V., Idrisova R.F. i dr. Epidemiologicheskaya kharakteristika nasledstvennykh spasticheskikh paraplegii v Respublike Bashkortostan. Meditsinskaya genetika 2013;(7):12–6.

3. Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P. Rasprostranennye formy nasledstvennykh spasticheskikh paraplegii. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2019;119(2):94–104. DOI: 10.17116/jnevro201911902194

4. De Souza P.V.S., de Rezende Pinto W.B.V., de Rezende Batistella G.N. et al. Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum 2017;16(2):525–51. DOI: 10.1007/s12311-016-0803-z

5. Lo Giudice T., Lombardi F., Santorelli F.M. et al. Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014;261:518–39. DOI: 10.1016/j.expneurol.2014.06.011

6. Koh K., Ishiura H., Tsuji S., Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain Sci 2018;8(8):153. DOI: 10.3390/brainsci8080153

7. Fink J.K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013;126(3):307–28. DOI: 10.1007/s00401-013-1115-8

8. Novarino G., Fenstermaker A.G., Zaki M.S. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 2014;343(6170):506–11. DOI: 10.1126/science.1247363

9. Klebe S., Stevanin G., Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: From SPG1 to SPG72 and still counting. Rev Neurol 2015;171(6–7):505–30. DOI: 10.1016/j.neurol.2015.02.017

10. Loureiro J.L., Brandão E., Ruano L. et al. Autosomal dominant spastic paraplegias: A review of 89 families resulting from a Portuguese survey. JAMA Neurol 2013;70(4):481–7. DOI: 10.1001/jamaneurol.2013.1956

11. Fourtassi M., Jacquin-Courtois S., Scheiber-Nogueira M.C. et al. Bladder dysfunction in hereditary spastic paraplegia: A clinical and urodynamic evaluation. Spinal Cord 2012;50(7):558–62. DOI: 10.1038/sc.2011.193

12. Hedera P., Eldevik O.P., Maly P. et al. Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 2005;47(10):730–4. DOI: 10.1007/s00234-005-1415-3

13. França M.C.Jr., D’Abreu A., Maurer-Morelli C.V. et al. Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 2007;22(11):1556–62. DOI: 10.1002/mds.21480

14. Suzuki S.O., Iwaki T., Arakawa K. et al. An autopsy case of adultonset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 2011;122(6):775–81. DOI: 10.1007/s00401-011-0916-x

15. Pérez-Brangulí F., Mishra H.K., Prots I. et al. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014;23(18):4859–74. DOI: 10.1093/hmg/ddu200

16. Mackay-Sim A. Hereditary spastic paraplegia: from genes, cells and networks to novel pathways for drug discovery. Brain Sci 2021;11(3):403. DOI: 10.3390/brainsci11030403

17. Zhu P.P., Denton K.R., Pierson T.M. et al. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet 2014;23(21):5638–48. DOI: 10.1093/hmg/ddu280

18. Park S.H., Zhu P.P., Parker R.L., Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 2010;120(4):1097–110. DOI: 10.1172/JCI40979

19. Tsang H.T., Edwards T.L., Wang X. et al. The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 2009;18(20):3805–21. DOI: 10.1093/hmg/ddp324

20. Mishra H.K., Prots I., Havlicek S. et al. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann Neurol 2016;79(5):826–40. DOI: 10.1002/ana.24633

21. Wali G., Kumar K.R., Liyanage E. et al. Mitochondrial function in hereditary spastic paraplegia: Deficits in SPG7 but not SPAST patient-derived stem cells. Front Neurosci 2020;14:820. DOI: 10.3389/fnins.2020.00820

22. Hansen J., Corydon T.J., Palmfeldt J. et al. Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 2008;153(2):474–82. DOI: 10.1016/j.neuroscience.2008.01.070

23. Denton K., Mou Y., Xu C.C. et al. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2018;27(14):2517–30. DOI: 10.1093/hmg/ddy156

24. Schulman I.G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017;591(19):2978–91. DOI: 10.1002/1873-3468.12702

25. Shribman S., Reid E., Crosby A.H. et al. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019;18(12):1136–46. DOI: 10.1016/S1474-4422(19)30235-2

26. Pascual B., de Bot S.T., Daniels M.R. et al. “Ears of the lynx” MRI sign is associated with SPG11 and SPG15 hereditary spastic paraplegia. AJNR Am J Neuroradiol 2019;40(1):199–203. DOI: 10.3174/ajnr.A5935

27. Hobson G.M., Garbern J.Y. Pelizaeus–Merzbacher disease, Pelizaeus–Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 2012;32(1):62–7. DOI: 10.1055/s-0032-1306388

28. Akhmetgaleeva A.F. Khidiyatova I.M., Saifullina E.V. i dr. Dve novye mutatsii v gene SPG4 u patsientov s autosomno-dominantnoi spasticheskoi paraplegiei. Genetika 2016;52(6):603–7. DOI: 10.7868/S0016675816060023

29. Akhmetgaleeva A.F., Khidiyatova I.M., Saifullina E.V. i dr. Klinicheskii sluchai sporadicheskoi spasticheskoi paraplegii pri novoi mutatsii v gene SPAST. Meditsinskaya genetika 2016;15(7):11–3. DOI: 10.1234/XXXX-XXXX-2016-7-11-13

30. Khidiyatova I.M., Saifullina E.V., Karunas A.S. i dr. Analiz mutatsii gena ATL1 i klinicheskikh osobennostei techeniya zabolevaniya u patsientov s nasledstvennoi spasticheskoi paraplegiei. Genetika 2022;58(9):1085–93. DOI: 10.31857/S0016675822090119

31. Khidiyatova I.M., Akhmetgaleeva A.F., Saifullina E.V. i dr. Mazhornaya mutatsiya v gene SPAST u patsientov s autosomnodominantnoi spasticheskoi paraplegiei iz Respubliki Bashkortostan. Genetika 2019;55(2):229–33. DOI: 10.1134/S0016675819020103

32. Margetis K., Korfias S., Boutos N. et al. Intrathecal baclofen therapy for the symptomatic treatment of hereditary spastic paraplegia. Clin Neurol Neurosurg 2014;123:142–5. DOI: 10.1016/j.clineuro.2014.05.024

33. De Niet M., de Bot S.T., van de Warrenburg B.P. et al. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: A study in patients with hereditary spastic paraplegia. J Rehabil Med 2015;47(2):147–53. DOI: 10.2340/16501977-1909

34. Béreau M., Anheim M., Chanson J.B. et al. Dalfampridine in hereditary spastic paraplegia: A prospective, open study. J Neurol 2015;262(5):1285–8. DOI: 10.1007/s00415-015-7707-6

35. Schöls L., Rattay T.W., Martus P. et al. Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial. Brain 2017;140(12):3112–27. DOI: 10.1093/brain/awx273

36. Boutry M., Morais S., Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 2019;19(4):18. DOI: 10.1007/s11910-019-0930-2

37. Julien C., Lissouba A., Madabattula S. et al. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet 2016;25(6):1088–99. DOI: 10.1093/hmg/ddv632

38. Napoli B., Gumeni S., Forgiarini A. et al. Naringenin ameliorates drosophila ReepA hereditary spastic paraplegia-linked phenotypes. Front Neurosci 2019;13:1202. DOI: 10.3389/fnins.2019.01202

39. Illarioshkin S.N., Rudenskaya G.E., Ivanova-Smolenskaya I.A. i dr. Nasledstvennye ataksii i paraplegii. M., 2006. 415 s.

40. Panza E., Meyyazhagan A., Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022;357:114203. DOI: 10.1016/j.expneurol.2022.114203

41. Meyyazhagan A., Kuchi Bhotla H., Pappuswamy M., Orlacchio A. The puzzle of hereditary spastic paraplegia: From epidemiology to treatment. Int J Mol Sci 2022;23(14):7665. DOI: 10.3390/ijms23147665