Журналов:     Статей:        

Российские нанотехнологии. 2019; 14: 91-99

Применение наночастиц золота для высокочувствительного поляризационного флуоресцентного аптамерного анализа охратоксина А

Самохвалов А. В., Сафенкова И. В., Еремин С. А., Жердев А. В., Дзантиев Б. Б.

https://doi.org/10.21517/1992-7223-2019-7-8-91-99

Аннотация

Предложено применение наночастиц золота (НЧЗ) в качестве носителей для снижения предела обнаружения поляризационного флуоресцентного (ПФ) аптамерного анализа. ПФ-анализ основывается на различиях флуорофора, конъюгированного с аналитом и облучаемого плоскополяризованным светом, по степени деполяризации излучаемого света до и после связывания аналита с рецептором. Применение аптамеров в качестве рецепторов в таком анализе ограничено из-за их небольшой молекулярной массы и соответственно недостаточного влияния на поляризацию. Данное ограничение может быть устранено посредством включения аптамеров в крупные межмолекулярные комплексы. Показаны преимущества НЧЗ как унифицированного, стабильного и легкомодифицируемого носителя для аптамеров. ПФ-аптамерный анализ реализован с применением НЧЗ, имеющих средний диаметр 8.7 нм, и охратоксина А (ОТА) в качестве целевого аналита. Анализ апробирован для тестирования проб белого вина. Достигнутый предел обнаружения ОТА — 2.3 мкг/кг, что в 25 раз ниже, чем при использовании нативного аптамера. Продолжительность анализа — 15 мин. Предлагаемый подход может применяться для аптамерного анализа различных низкомолекулярных соединений.
Список литературы

1. Dykman L., Khlebtsov N. // Chem. Soc. Rev. 2012. V. 41. № 6. P. 2256. https://doi.org/10.1134/S1995078013020092.

2. Elahi N. , Kamali M., Baghersad M.H. // Talanta. 2018. V. 184. P. 537. https://doi.org/10.1016/j.talanta.2018.02.088.

3. Navarro J.R.G., Lerouge F. // Nanophotonics. 2017. V. 6. № 1. P. 71. https://doi.org/10.1515/nanoph-2015-0143.

4. Хлебцов Б.Н., Ханадеев В.А., Панфилова Е.В. и др. // Российские нанотехнологии. 201 2. Т. 7. № 11–12. С. 87. https://doi.org/10.1134/S1995078013020092.

5. Malmsten M. // Curr. Opin. Colloid Interface Sci. 2013. V. 18. № 5. P. 468. https://doi.org/10.1016/j.cocis.2013.06.002.

6. Doria G., Conde J., Veigas B. et al. // Sensors. 2012. V. 12. № 2. P. 1657. https: //doi.org/10.3390/s120201657.

7. Хлебцов Н.Г., Богатырев В.А., Дыкман Л.А., Хлебцов Б.Н. // Российские нанотехнологии. 2007. Т. 2. № 3–4. С. 69.

8. Rosi N.L., Mi rki n C.A. // Chem Rev. 2005. V. 105. № 4. P. 1547. https://doi.org/10.1021/cr030067f.

9. Mirkin C.A., Letsinger R.L., Mucic R.C., Storhoff J.J. // Nature. 1996. V. 382. № 6592. P. 60 7. https://doi.org/10.1038/382607a0.

10. Ellington A.D., Szostak J.W. // Nature. 1992. V. 355. № 6363. P. 850. https://doi.org/10.1038/355850a0.

11. Kong H.Y., Byun J. // Biomol. Ther. 2013. V. 21. № 6. P. 423. http://dx.doi.org/10.4062/biomolther.2013.085.

12. McKeague M., McConnell E.M., Cruz-Toledo J. et al. // J. Mol. Evol. 2015. V. 81. № 5–6. P. 150. https://doi.org/10.1007/s00239-015-9708-6.

13. Nakamura Y. // Nucleic Acid Drugs / Ed. Murakami A. Heidelberg: Springer-Verlag, 2012. P. 135. https://doi.org/10.1007/978-3-642-304 63-7.

14. Xu J.J., Li L.L., Shi H. et al. // Inorg. Chem. Commun. 2019. V. 107. P. 107456. https://doi.org/10.1016/j.inoche.2019.107456.

15. Kim D., Jeong Y.Y., Jon S. // ACS Nano. 2010. V. 4. № 7. P. 3689. https://doi.org/10.1021/nn901877h.

16. Medley C.D., Smith J.E., Tang Z. et al. // Anal. Chem. 2008. V. 80. № 4. P. 1067. https://doi.org/10.1021/ac702037y.

17. Wei H., Li B., Li J. et al. // Chem. Commun. 2007. № 36. P. 3735. http://dx.doi.org/10.1039/b707642h.

18. Wu Y.Y., Huang P., Wu F.Y. // Food Chem. 2020. V. 304. Article 125377. https://doi.org/10.1016/j.foodchem.2019.125377.

19. Wang W., Chen C., Qian M., Zhao X.S. // Anal. Biochem. 2008. V. 373. № 2. P. 213. https: //doi.org/10.1016/j.ab.2007.11.013.

20. Wang J., Shan Y., Zhao W.W. et al. // Anal. Chem. 2011. V. 83. № 11. P. 4004. https://doi.org /10.1021/ac200616g.

21. Wang R.H., Zhu C.L., Wang L.L. et al. // Talanta. 2019. V. 205. Article 120094. https://doi.org/10.1016/j.talanta.2019.06.094.

22. Liu Z. , Wang H. // Analyst. 2019. V. 144. № 19. P. 5794. https://doi.org/10.1039/c9an01430f.

23. Morita Y., Leslie M., Kameyama H. et al. // Cancers. 2018. V. 10. № 3. Article 80. https://doi.org/10.3390/cancers10030080.

24. Zhou J., Rossi J. // Nat. Rev. Drug Discov. 2017. V. 16. № 3. P. 181. https://doi.org/10.1038/nrd.2016.199.

25. Zhang H.Y., Yang S.P., De Ruyck K. et al. // TRAC — Trends Anal. Chem. 2019. V. 114. P. 293. https ://doi.org/10.1016/j.trac.2019.03.013.

26. Samokhvalov A.V., Safenkova I.V., Eremin S.A. et al. // Anal. Chim. Acta. 2017. V. 962. P. 80 . https://doi.org/10.1016/j.aca.2017.01.024.

27. Li Y., Sun L., Zhao Q. // Talanta. 2017. V. 174. P. 7. https://doi.org/10.1016/j.talanta.2017.05.077.

28. Wang Y., Li Z., Barnych B. et al. // J. Agric. Food Chem. 2019. V. 67. № 41. P. 11536. https://doi.org/10.1021/acs.jafc.9b04621.

29. Tao Y., Xie S., Xu F. et al. // Food Chem. Toxicol. 2018. V. 112. P. 320. https://doi.org/10.1016/j.fct.2018.01.002.

30. Commission Regulation (EC) № 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (OJ L 364, 20.12.200 6, p. 5).

31. Philip D. // Spectrochim. Acta A. 2008. V. 71. № 1. P. 80. https://doi.org/10.1016/j.saa.2007.11.012.

Title in english. 2019; 14: 91-99

Application of gold nanoparticles for high-sensitive polarization fluorescence-based aptamer assays of ochratoxin A

Samokhvalov A. V., Safenkova I. V., Eremin S. A., Zherdev A. V., Dzantiev B. B.

https://doi.org/10.21517/1992-7223-2019-7-8-91-99

Abstract

The use of gold nanoparticles (GNPs) as carriers for the decreasing of detection limit of fluorescence polarization (FP) aptamer assay is proposed. The common FP assay is based on the use of polarized exciting light and changes in the polarization of emitted light by the fluorophore-analyte conjugate before and after its binding with a receptor of the target analyte. Aptamers application as receptors in this assay is limited due to their low molecular weight and corresponding low influence on polarization of emitted light. This limitation may be overcome by the inclusion of aptamers in larger intermolecular complexes. In the present work, the advantages of GNPs as unified, stable and simply modified carriers for aptamers are demonstrated. The FP aptamer assay was realized with the use of GNPs with average diameter of 8.7 nm and ochratoxin A (OTA) as target analyte. Finally the assay was tested for OTA control in spiked white wine. The reached limit of detection was 2.3 µg/kg being 25-fold lower as compared to native aptamer. Time of the assay is 15 min. The universality of the proposed approach makes it possible to use aptamers for FP assay of various low molecular weight substances.

References

1. Dykman L., Khlebtsov N. // Chem. Soc. Rev. 2012. V. 41. № 6. P. 2256. https://doi.org/10.1134/S1995078013020092.

2. Elahi N. , Kamali M., Baghersad M.H. // Talanta. 2018. V. 184. P. 537. https://doi.org/10.1016/j.talanta.2018.02.088.

3. Navarro J.R.G., Lerouge F. // Nanophotonics. 2017. V. 6. № 1. P. 71. https://doi.org/10.1515/nanoph-2015-0143.

4. Khlebtsov B.N., Khanadeev V.A., Panfilova E.V. i dr. // Rossiiskie nanotekhnologii. 201 2. T. 7. № 11–12. S. 87. https://doi.org/10.1134/S1995078013020092.

5. Malmsten M. // Curr. Opin. Colloid Interface Sci. 2013. V. 18. № 5. P. 468. https://doi.org/10.1016/j.cocis.2013.06.002.

6. Doria G., Conde J., Veigas B. et al. // Sensors. 2012. V. 12. № 2. P. 1657. https: //doi.org/10.3390/s120201657.

7. Khlebtsov N.G., Bogatyrev V.A., Dykman L.A., Khlebtsov B.N. // Rossiiskie nanotekhnologii. 2007. T. 2. № 3–4. S. 69.

8. Rosi N.L., Mi rki n C.A. // Chem Rev. 2005. V. 105. № 4. P. 1547. https://doi.org/10.1021/cr030067f.

9. Mirkin C.A., Letsinger R.L., Mucic R.C., Storhoff J.J. // Nature. 1996. V. 382. № 6592. P. 60 7. https://doi.org/10.1038/382607a0.

10. Ellington A.D., Szostak J.W. // Nature. 1992. V. 355. № 6363. P. 850. https://doi.org/10.1038/355850a0.

11. Kong H.Y., Byun J. // Biomol. Ther. 2013. V. 21. № 6. P. 423. http://dx.doi.org/10.4062/biomolther.2013.085.

12. McKeague M., McConnell E.M., Cruz-Toledo J. et al. // J. Mol. Evol. 2015. V. 81. № 5–6. P. 150. https://doi.org/10.1007/s00239-015-9708-6.

13. Nakamura Y. // Nucleic Acid Drugs / Ed. Murakami A. Heidelberg: Springer-Verlag, 2012. P. 135. https://doi.org/10.1007/978-3-642-304 63-7.

14. Xu J.J., Li L.L., Shi H. et al. // Inorg. Chem. Commun. 2019. V. 107. P. 107456. https://doi.org/10.1016/j.inoche.2019.107456.

15. Kim D., Jeong Y.Y., Jon S. // ACS Nano. 2010. V. 4. № 7. P. 3689. https://doi.org/10.1021/nn901877h.

16. Medley C.D., Smith J.E., Tang Z. et al. // Anal. Chem. 2008. V. 80. № 4. P. 1067. https://doi.org/10.1021/ac702037y.

17. Wei H., Li B., Li J. et al. // Chem. Commun. 2007. № 36. P. 3735. http://dx.doi.org/10.1039/b707642h.

18. Wu Y.Y., Huang P., Wu F.Y. // Food Chem. 2020. V. 304. Article 125377. https://doi.org/10.1016/j.foodchem.2019.125377.

19. Wang W., Chen C., Qian M., Zhao X.S. // Anal. Biochem. 2008. V. 373. № 2. P. 213. https: //doi.org/10.1016/j.ab.2007.11.013.

20. Wang J., Shan Y., Zhao W.W. et al. // Anal. Chem. 2011. V. 83. № 11. P. 4004. https://doi.org /10.1021/ac200616g.

21. Wang R.H., Zhu C.L., Wang L.L. et al. // Talanta. 2019. V. 205. Article 120094. https://doi.org/10.1016/j.talanta.2019.06.094.

22. Liu Z. , Wang H. // Analyst. 2019. V. 144. № 19. P. 5794. https://doi.org/10.1039/c9an01430f.

23. Morita Y., Leslie M., Kameyama H. et al. // Cancers. 2018. V. 10. № 3. Article 80. https://doi.org/10.3390/cancers10030080.

24. Zhou J., Rossi J. // Nat. Rev. Drug Discov. 2017. V. 16. № 3. P. 181. https://doi.org/10.1038/nrd.2016.199.

25. Zhang H.Y., Yang S.P., De Ruyck K. et al. // TRAC — Trends Anal. Chem. 2019. V. 114. P. 293. https ://doi.org/10.1016/j.trac.2019.03.013.

26. Samokhvalov A.V., Safenkova I.V., Eremin S.A. et al. // Anal. Chim. Acta. 2017. V. 962. P. 80 . https://doi.org/10.1016/j.aca.2017.01.024.

27. Li Y., Sun L., Zhao Q. // Talanta. 2017. V. 174. P. 7. https://doi.org/10.1016/j.talanta.2017.05.077.

28. Wang Y., Li Z., Barnych B. et al. // J. Agric. Food Chem. 2019. V. 67. № 41. P. 11536. https://doi.org/10.1021/acs.jafc.9b04621.

29. Tao Y., Xie S., Xu F. et al. // Food Chem. Toxicol. 2018. V. 112. P. 320. https://doi.org/10.1016/j.fct.2018.01.002.

30. Commission Regulation (EC) № 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (OJ L 364, 20.12.200 6, p. 5).

31. Philip D. // Spectrochim. Acta A. 2008. V. 71. № 1. P. 80. https://doi.org/10.1016/j.saa.2007.11.012.