Российские нанотехнологии. 2019; 14: 3-22
Новые перспективные материалы на основе рекомбинантного и регенерированного шелка для медицины и конструкционных тканей
Тенчурин Т. Х., Шариков Р. В., Чвалун С. Н.
https://doi.org/10.21517/1992-7223-2019-7-8-3-22Аннотация
Список литературы
1. Texas A & M University. "Enormous Spider Web Found In Texas." ScienceDaily. ScienceDaily, 13 September 2007. www.sciencedaily.com/releases/2007/09/070912145919.
2. Мир животных: Насекомые. Пауки. Домашние животные / Под ред. Акимушкина И.И.: М.: Мысль, 1990. 462 с.
3. Rising A., Johansson J. // Nature Chemical Biology. 2015. V. 11. № 5. P. 309. DOI: 10.1038/nchembio.1789.
4. Kojic N., Bico J., Clasen C., McKinley G.H. // J. Experimental Biology. 2006. V. 209. № 21. P. 4355. DOI: 10.1242/jeb.02516.
5. Bird R.B., Armstrong R.C., Hassager O. Dynamics of Polymeric Liquids. New York: WileyInterscience, 1987.
6. Holland C., Terry A.E., Porter D. Vollrath F. // Nature Materials. 2006. V. 5. № 11. P. 870. doi:10.1038/nmat1762.
7. Boulet-Audet M., Terry A.E., Vollrath F., Holland C. // Acta Biomater. 2014. V. 10. № 2. P. 776. doi:10.1016/j.actbio.2013.10.032.
8. Holland C., Urbach J.S., Blair D.L. // Soft Matter. 2012. V. 8. № 9. P. 2590. DOI: 10.1039 / C2SM06886A.
9. Greving I., Cai M., Vollrath F., Schniepp H.C. // Biomacromolecules. 2012. V. 13. № 3. P. 676. doi:10.1021/bm201509b.
10. Greving I., Dicko C., Terry A. et al. // Soft Matter. 2010. V. 6 № 18. P. 4389. DOI: 10.1039 / C0SM00108B.
11. Holland C., Terry A.E., Porter D., Vollrath F. // Polymer. 2007. V. 48. № 12. P. 3388. DOI: 10.1016/j.polymer.2007.04.019.
12. Leclerc J., Lefevre T., Gauthier M. et al. // Biopolymers. 2013. V. 99. № 9. P. 582. DOI: 10.1002/bip.22218.
13. Chen X., Shao Z., Vollrath F. // Soft Matter. 2006. V. 2. № 6. P. 448. DOI: 10.1039 / B601286H.
14. Thamm C., Scheibel T. // Biomacromolecules. 2017. V. 18. № 4. P. 1365. DOI:10.1021/acs.biomac.7b00090.
15. Weatherbee-Martin N., Xu L., Hupe A. et al. // Biomacromolecules. 2016. V. 17. № 8. P. 2737. DOI: 10.1021/acs.biomac.6b00857.
16. Ling S., Dinjaski N., Ebrahimi D. et al. // ACS Biomater. Sci. Eng. 2016. V. 2. № 8. P. 1298. DOI: 10.1021/acsbiomaterials.6b00234.
17. Elices M., Guinea G.V., Plaza G.R. et al. // Macromolecules. 2011. V. 44. № 5. P. 1166. DOI: 10.1021/ma102291m.
18. Rising A., Widhe M., Johansson J. et al. // Cellular and Molecular Life Sciences. 2011. V. 68. № 2. P. 169. DOI: 10.1007/s00018-010-0462-z.
19. Li X., Shi C.H., Tang C.L. et al. // Biology Open. 2017. V. 6. № 3. P. 333. DOI: 10.1242 / bio.022665.
20. Bowen C.H., Dai B., Sargent C.J. et al // Biomacromolecules. 2018. V. 19. № 9. P. 3853. DOI: 10.1021/acs.biomac.8b00980.
21. Andersson M., Jia Q., Abella A. et al. // Nature Chemical Biology. 2017. V. 13. № 3. P. 262. DOI: 10.1038/nchembio.2269.
22. Pérez-Rigueiro J., Madurga R., Gañán-Calvo A.M. et al. // Biomimetics. 2018. V. 3. № 4. P. 29. DOI: 10.3390/biomimetics3040029.
23. Ling S., Qin Z., Li C. et al. // Nature Commun. 2017. V. 8. № 1. P. 1387. DOI: 10.1038/s41467-017-00613-5.
24. Gosline J.M., Guerette P.A., Ortlepp C.S., Savage K.N. // J. Experimental Biology. 1999. V. 202. № 23. P. 3295.
25. Bhardwaj N., Kundu S.C. // Biotechnology Adv. 2010. V. 28. № 3. P. 325. DOI: 10.1016/j.biotechadv.2010.01.004.
26. Pillai C.K.S, Paul W., Sharma C.P. // Progress in Polymer Science. 2009. V. 34. № 7. P. 641. DOI: 10.1016/j.progpolymsci.2009.04.001.
27. Malakhov S.N., Bakirov A.V., Dmitryakov P.V., Chvalun S.N. // Russian J. Applied Chemistry. 2016. V. 89. № 1. P. 165. DOI: 10.1134/S1070427216010262.
28. Malakhov S.N., Chvalun S.N. // Fibre Chemistry. 2017. V. 49. P. 173. DOI: 10.1007/s10692-017-9865-z.
29. Brown T.D., Daltona P.D., Hutmacher D.W. // Progress in Polymer Science. 2016. V. 56. P. 116. DOI: 10.1016/j.progpolymsci.2016.01.001.
30. Greiner A., Wendorff J.H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 5670. DOI: 10.1002/anie.200604646.
31. Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. // Biomacromolecules. 2002. V. 3. № 2. P. 232. DOI: 10.1021/bm015533u.
32. Min B.M., Lee G., Kim S.H. et al. // Biomaterials. 2004. V. 25. № 7–8. P. 1289. DOI: 10.1016/j.biomaterials.2003.08.045.
33. Kim Y.J., Bae H.I., Kwon O.K., Choi M.S. et al. // Int. J. Biological Macromolecules. 2009. V. 45. № 1. P. 65. DOI: 10.1016/j.ijbiomac.2009.04.003.
34. Lukanina K.I., Grigor’ev T.E., Tenchurin T.Kh. et al. // Fibre Chemistry. 2017. V. 49. № 3. P. 205. DOI: 10.1007/s10692-017-9870-2.
35. Leal-Egan A., Lang G., Mauerer C. et al. // Advanced Engineering Materials. 2012. V. 14. № 3. P. B67. DOI: 10.1002/adem.201180072.
36. Bini E., Foo C.W.P., Huang J. et al. // Biomacromolecules. 2006. V. 7. P. 3139. DOI: 10.1021/bm0607877.
37. Min B.M., Lee G., Kim S.H. et al. // Biomaterials. 2004. V. 25. № 7–8. P. 1289. DOI: 10.1016/j.biomaterials.2003.08.045.
38. Wang H.S., Fu G.D., Li X.S. // Recent Patents on Nanotechnology. 2009. V. 3 № 1. P. 21. DOI: 10.2174/187221009787003285.
39. Ladizesky N.H., Ward I.M. // J. Materials Science: Materials in Medicine. 1995. V. 6. № 9. P. 497. DOI: 10.1007/BF00151029.
40. Casper C.L., Yamaguchi N., Kiick K.L., Rabolt J.F. // Biomacromolecules. 2005. V. 6. № 4. P. 1998. DOI: 10.1021/bm050007e.
41. Zhu Z., Ohgo K., Watanabe R. et al. // J. Applied Polymer Science. 2008. V. 109. № 5. P. 2956. DOI: 10.1002/app.28460.
42. Teplenin A., Krasheninnikova A., Agladze N. et al. // PLoS One. 2015. V. 10. № 3. P. e0121155. DOI: 10.1371/journal.pone.0121155.
43. Bini E., Foo C.W.P., Huang J. et al. // Biomacromolecules. 2006. V. 7. № 11. P. 3139. DOI: 10.1021/bm0607877.
44. Baklaushev V.P., Bogush V.G., Kalsin V.A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 3161. DOI: 10.1038/s41598-019-39341-9.
45. Li Y., Xiao Y., Liu C. // Chemical Reviews. 2017. V. 117. № 5. P. 4376. DOI: 10.1021/acs.chemrev.6b00654.
46. Skotak M., Noriega S., Larsen G., Subramanian A. // J. Biomedical Materials Research. Pt A. 2010. V. 95. № 3. P. 828. DOI: 10.1002/jbm.a.32850.
47. Yi B., Shen Y., Tang H. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 7. P. 6867. DOI: 10.1021/acsami.9b00293.
48. Tenchurin T.K., Belousov S.I., Kiryukhin Yu.I. et al. // J. Biomedical Materials Research. Pt A. 2019. V. 107. № 2. P. 312. DOI: 10.1002/jbm.a.36459.
49. Zhang F., Zuo B., Fan Z. et al. // Biomacromolecules. 2012. V. 13. № 3. P. 798. DOI: 10.1021/bm201719s.
50. Dou H., Zuo B. // J. Nanomaterials. 2014. V. 2014. P. 89. DOI: 10.1155/2014/646021.
51. Catto V., Farè S., Cattaneo I. et al. // Materials Science and Engineering. 2015. V. 54. P. 101. DOI: 10.1016/j.msec.2015.05.003.
52. Lang G., Neugirg B.R., Kluge D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9 № 1. P. 892. DOI: 10.1021/acsami.6b13093.
53. Bratzel G., Buehler M.J. // Biopolymers. 2012. V. 97. № 6. P. 408. DOI: doi.org/10.1002/bip.21729.
54. Drummy L.F., Farmer B.L., Naik R.R. // Soft Matter. 2007. V. 3. № 7. P. 877. DOI: 10.1039/b701220a.
55. Cetinkaya M., Xiao S., Grater F. // Soft Matter. 2011. V. 7. № 18. P. 8142. DOI: 10.1039/C1SM05470H.
Title in english. 2019; 14: 3-22
Advanced recombinant and regenerated silk materials for medicine and tissue engineering
Tenchurin T. K., Sharikov R. V., Chvalun S. N.
https://doi.org/10.21517/1992-7223-2019-7-8-3-22Abstract
A spider web is one of the most strong natural materials. The strength of its filaments can reach 1.3–1.5 GPa, which is comparable with the strength of steel. Its toughness reaches enormous values of 194–283 MJ / m3; therefore, textiles based on spider yarns can be promising in the production of composite materials for aircraft and automobiles. Spider fibers have high biocompatibility and antibacterial properties, support cell viability and do not cause an immune response. Thus, they can be used for manufacturing of three-dimensional porous cell scaffolds for tissue engineering purposes. The undoubted advantages of spider fibers include the fact that they do not melt. Therefore, textile products made of spider silk can be used to make army equipment. Unfortunately, mass production of spider silk using breeding of spiders is not possible. In this regard, the development of its synthetic analogues using recombinant DNA technology is of current interest. In order to create the technology for manufacturing of artificial silk fiber and medical materials, this review presents the main works in the field of studying the rheological properties of solutions of spidroin (the main web material) and silk fibroin, showing how structural transformations of spidroin are induced by a change in pH, salt content, and shear stress , determine its ability to self-organize in aqueous solutions. The analysis of the most important works in the field of wet, dry-wet spinning and electrospinning of fibers is given, as well as a comparison of the mechanical properties of the fibers of recombinant spidroin and natural spider fibers. Significant recent successes in this area allow us to move on to the creation of a new generation of fibrous materials.
References
1. Texas A & M University. "Enormous Spider Web Found In Texas." ScienceDaily. ScienceDaily, 13 September 2007. www.sciencedaily.com/releases/2007/09/070912145919.
2. Mir zhivotnykh: Nasekomye. Pauki. Domashnie zhivotnye / Pod red. Akimushkina I.I.: M.: Mysl', 1990. 462 s.
3. Rising A., Johansson J. // Nature Chemical Biology. 2015. V. 11. № 5. P. 309. DOI: 10.1038/nchembio.1789.
4. Kojic N., Bico J., Clasen C., McKinley G.H. // J. Experimental Biology. 2006. V. 209. № 21. P. 4355. DOI: 10.1242/jeb.02516.
5. Bird R.B., Armstrong R.C., Hassager O. Dynamics of Polymeric Liquids. New York: WileyInterscience, 1987.
6. Holland C., Terry A.E., Porter D. Vollrath F. // Nature Materials. 2006. V. 5. № 11. P. 870. doi:10.1038/nmat1762.
7. Boulet-Audet M., Terry A.E., Vollrath F., Holland C. // Acta Biomater. 2014. V. 10. № 2. P. 776. doi:10.1016/j.actbio.2013.10.032.
8. Holland C., Urbach J.S., Blair D.L. // Soft Matter. 2012. V. 8. № 9. P. 2590. DOI: 10.1039 / C2SM06886A.
9. Greving I., Cai M., Vollrath F., Schniepp H.C. // Biomacromolecules. 2012. V. 13. № 3. P. 676. doi:10.1021/bm201509b.
10. Greving I., Dicko C., Terry A. et al. // Soft Matter. 2010. V. 6 № 18. P. 4389. DOI: 10.1039 / C0SM00108B.
11. Holland C., Terry A.E., Porter D., Vollrath F. // Polymer. 2007. V. 48. № 12. P. 3388. DOI: 10.1016/j.polymer.2007.04.019.
12. Leclerc J., Lefevre T., Gauthier M. et al. // Biopolymers. 2013. V. 99. № 9. P. 582. DOI: 10.1002/bip.22218.
13. Chen X., Shao Z., Vollrath F. // Soft Matter. 2006. V. 2. № 6. P. 448. DOI: 10.1039 / B601286H.
14. Thamm C., Scheibel T. // Biomacromolecules. 2017. V. 18. № 4. P. 1365. DOI:10.1021/acs.biomac.7b00090.
15. Weatherbee-Martin N., Xu L., Hupe A. et al. // Biomacromolecules. 2016. V. 17. № 8. P. 2737. DOI: 10.1021/acs.biomac.6b00857.
16. Ling S., Dinjaski N., Ebrahimi D. et al. // ACS Biomater. Sci. Eng. 2016. V. 2. № 8. P. 1298. DOI: 10.1021/acsbiomaterials.6b00234.
17. Elices M., Guinea G.V., Plaza G.R. et al. // Macromolecules. 2011. V. 44. № 5. P. 1166. DOI: 10.1021/ma102291m.
18. Rising A., Widhe M., Johansson J. et al. // Cellular and Molecular Life Sciences. 2011. V. 68. № 2. P. 169. DOI: 10.1007/s00018-010-0462-z.
19. Li X., Shi C.H., Tang C.L. et al. // Biology Open. 2017. V. 6. № 3. P. 333. DOI: 10.1242 / bio.022665.
20. Bowen C.H., Dai B., Sargent C.J. et al // Biomacromolecules. 2018. V. 19. № 9. P. 3853. DOI: 10.1021/acs.biomac.8b00980.
21. Andersson M., Jia Q., Abella A. et al. // Nature Chemical Biology. 2017. V. 13. № 3. P. 262. DOI: 10.1038/nchembio.2269.
22. Pérez-Rigueiro J., Madurga R., Gañán-Calvo A.M. et al. // Biomimetics. 2018. V. 3. № 4. P. 29. DOI: 10.3390/biomimetics3040029.
23. Ling S., Qin Z., Li C. et al. // Nature Commun. 2017. V. 8. № 1. P. 1387. DOI: 10.1038/s41467-017-00613-5.
24. Gosline J.M., Guerette P.A., Ortlepp C.S., Savage K.N. // J. Experimental Biology. 1999. V. 202. № 23. P. 3295.
25. Bhardwaj N., Kundu S.C. // Biotechnology Adv. 2010. V. 28. № 3. P. 325. DOI: 10.1016/j.biotechadv.2010.01.004.
26. Pillai C.K.S, Paul W., Sharma C.P. // Progress in Polymer Science. 2009. V. 34. № 7. P. 641. DOI: 10.1016/j.progpolymsci.2009.04.001.
27. Malakhov S.N., Bakirov A.V., Dmitryakov P.V., Chvalun S.N. // Russian J. Applied Chemistry. 2016. V. 89. № 1. P. 165. DOI: 10.1134/S1070427216010262.
28. Malakhov S.N., Chvalun S.N. // Fibre Chemistry. 2017. V. 49. P. 173. DOI: 10.1007/s10692-017-9865-z.
29. Brown T.D., Daltona P.D., Hutmacher D.W. // Progress in Polymer Science. 2016. V. 56. P. 116. DOI: 10.1016/j.progpolymsci.2016.01.001.
30. Greiner A., Wendorff J.H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 5670. DOI: 10.1002/anie.200604646.
31. Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. // Biomacromolecules. 2002. V. 3. № 2. P. 232. DOI: 10.1021/bm015533u.
32. Min B.M., Lee G., Kim S.H. et al. // Biomaterials. 2004. V. 25. № 7–8. P. 1289. DOI: 10.1016/j.biomaterials.2003.08.045.
33. Kim Y.J., Bae H.I., Kwon O.K., Choi M.S. et al. // Int. J. Biological Macromolecules. 2009. V. 45. № 1. P. 65. DOI: 10.1016/j.ijbiomac.2009.04.003.
34. Lukanina K.I., Grigor’ev T.E., Tenchurin T.Kh. et al. // Fibre Chemistry. 2017. V. 49. № 3. P. 205. DOI: 10.1007/s10692-017-9870-2.
35. Leal-Egan A., Lang G., Mauerer C. et al. // Advanced Engineering Materials. 2012. V. 14. № 3. P. B67. DOI: 10.1002/adem.201180072.
36. Bini E., Foo C.W.P., Huang J. et al. // Biomacromolecules. 2006. V. 7. P. 3139. DOI: 10.1021/bm0607877.
37. Min B.M., Lee G., Kim S.H. et al. // Biomaterials. 2004. V. 25. № 7–8. P. 1289. DOI: 10.1016/j.biomaterials.2003.08.045.
38. Wang H.S., Fu G.D., Li X.S. // Recent Patents on Nanotechnology. 2009. V. 3 № 1. P. 21. DOI: 10.2174/187221009787003285.
39. Ladizesky N.H., Ward I.M. // J. Materials Science: Materials in Medicine. 1995. V. 6. № 9. P. 497. DOI: 10.1007/BF00151029.
40. Casper C.L., Yamaguchi N., Kiick K.L., Rabolt J.F. // Biomacromolecules. 2005. V. 6. № 4. P. 1998. DOI: 10.1021/bm050007e.
41. Zhu Z., Ohgo K., Watanabe R. et al. // J. Applied Polymer Science. 2008. V. 109. № 5. P. 2956. DOI: 10.1002/app.28460.
42. Teplenin A., Krasheninnikova A., Agladze N. et al. // PLoS One. 2015. V. 10. № 3. P. e0121155. DOI: 10.1371/journal.pone.0121155.
43. Bini E., Foo C.W.P., Huang J. et al. // Biomacromolecules. 2006. V. 7. № 11. P. 3139. DOI: 10.1021/bm0607877.
44. Baklaushev V.P., Bogush V.G., Kalsin V.A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 3161. DOI: 10.1038/s41598-019-39341-9.
45. Li Y., Xiao Y., Liu C. // Chemical Reviews. 2017. V. 117. № 5. P. 4376. DOI: 10.1021/acs.chemrev.6b00654.
46. Skotak M., Noriega S., Larsen G., Subramanian A. // J. Biomedical Materials Research. Pt A. 2010. V. 95. № 3. P. 828. DOI: 10.1002/jbm.a.32850.
47. Yi B., Shen Y., Tang H. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 7. P. 6867. DOI: 10.1021/acsami.9b00293.
48. Tenchurin T.K., Belousov S.I., Kiryukhin Yu.I. et al. // J. Biomedical Materials Research. Pt A. 2019. V. 107. № 2. P. 312. DOI: 10.1002/jbm.a.36459.
49. Zhang F., Zuo B., Fan Z. et al. // Biomacromolecules. 2012. V. 13. № 3. P. 798. DOI: 10.1021/bm201719s.
50. Dou H., Zuo B. // J. Nanomaterials. 2014. V. 2014. P. 89. DOI: 10.1155/2014/646021.
51. Catto V., Farè S., Cattaneo I. et al. // Materials Science and Engineering. 2015. V. 54. P. 101. DOI: 10.1016/j.msec.2015.05.003.
52. Lang G., Neugirg B.R., Kluge D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9 № 1. P. 892. DOI: 10.1021/acsami.6b13093.
53. Bratzel G., Buehler M.J. // Biopolymers. 2012. V. 97. № 6. P. 408. DOI: doi.org/10.1002/bip.21729.
54. Drummy L.F., Farmer B.L., Naik R.R. // Soft Matter. 2007. V. 3. № 7. P. 877. DOI: 10.1039/b701220a.
55. Cetinkaya M., Xiao S., Grater F. // Soft Matter. 2011. V. 7. № 18. P. 8142. DOI: 10.1039/C1SM05470H.
События
-
Журнал «Природопользование» присоединился к Elpub >>>
27 окт 2025 | 12:07 -
Журнал «Вестник Сибирского государственного университета путей сообщения» присоединился к Elpub! >>>
23 окт 2025 | 11:23 -
Журнал «Известия Кабардино-Балкарского государственного университета» теперь на платформе Elpub >>>
22 окт 2025 | 11:23 -
К платформе Elpub присоединился журнал «Новые технологии в строительстве» >>>
20 окт 2025 | 12:10 -
Журнал «Продовольственная безопасность и биоэкономика» присоединился к платформе Elpub >>>
14 окт 2025 | 09:59
