Журналов:     Статей:        

Российские нанотехнологии. 2019; 14: 37-49

Низкотемпературная деградация композитной ATZ-керамики, армированной многостенными углеродными нанотрубками

Коренков В. В., Тюрин А. И., Родаев В. В., Жигачев А. О., Умрихин А. В., Пирожкова Т. С., Головин Ю. И.

https://doi.org/10.21517/1992-7223-2019-5-6-37-49

Аннотация

Изучено влияние водяных паров на структурную устойчивость и механические свойства керамик на основе бадделеита (природного минерала диоксида циркония) и химически осажденного ZrO2, армированных углеродными нанотрубками. Показано, что эти композиты обладают высокими физико-механическими свойствами и повышенной устойчивостью к старению в гидротермальных условиях. Полученные в работе композиты на основе бадделеита и стабилизированные СаО характеризуются скоростью старения более чем на порядок меньшей, чем в случае коммерческих керамик, стабилизированных Y2 О3. Введение углеродных нанотрубок в состав композитов и использование метода искрового плазменного спекания способствуют ингибированию роста размеров зерна, уменьшению масштабного эффекта в твердости, при этом трещиностойкость KC в гидротермальных условиях уменьшается слабее, чем в композитах, не содержащих нанотрубок.

Список литературы

1. Maji A., Choubey G. Microstructure and Mechanical Properties of Alumina Toughened Zirconia (ATZ) // Materials Today: Proceedings. 2018. V. 5. P. 7457. https://doi.org/10.1016/j.matpr.2017.11.417.

2. Exare C., Kiat J.-M., Guiblin N. et al. Structural evolution of ZTA composites during synthesis and processing // J. Europ. Ceram. Soc. 2015. V. 35. P. 1273. https://doi.org/10.1016/j.jeurceramsoc.2014.10.031.

3. Basu B., Balani K. Advanced Structural Ceramics. Wiley, 2011. 512 p.

4. Nevarez-Rascon A., Aguilar-Elguezabal A., Orrantia E., Bocanegra-Bernal M. On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2 O3 and ZrO2 content // Int. J. Refract. Metals Hard Mater. 2009. V. 27. № 6. P. 962. https://doi.org/10.1016/j.ijrmhm.2009.06.001.

5. Naglieri V., Palmero P., Montanaro L., Chevalier J. Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties // Mater. 2013. V. 6. P. 2090. https://doi.org/10.3390/ma6052090.

6. Evans A.G., Cannon R.M. Toughening of brittle solids by martensitic transformations. Overview No. 48 // Acta Metall. 1986. V. 34. P. 761. https://doi.org/10.1016/0001-6160(86)90052-0.

7. Gupta T.K., Bechtold J.H., Kuznicki R.C. et al. Stabilization of tetragonal phase in polycrystalline zirconia // J. Mater. Sci. 1977. V. 12. № 12. P. 2421. https://doi.org/10.1007/BF00553928.

8. Basu B., Vleugels J., Van Der Biest O. Transformation behaviour of tetragonal zirconia: role of dopant content and distribution // Mater. Sci. Eng. A. 2004. V. 366. P. 338. https://doi.org/10.1016/j.msea.2003.08.063.

9. Cruz S.A., Poyato R., Cumbrera F.L., Odriozola J.A. Nanostructured Spark Plasma Sintered Ce-TZP Ceramics // J. Am. Ceram. Soc. 2012. V. 95. № 3. P. 901. https://doi.org/10.1111/j.1551-2916.2011.04978.x.

10. Zhigachev A.O., Umrikhin A.V., Golovin Yu.I. The effect of calcia content on phase composition and mechanical properties of Ca-TZP prepared by high-energy milling of baddeleyite // Ceramics International. 2015. V. 41. № 10А. P. 13804. https://doi.org/10.1016/j. ceramint.2015.08.063.

11. Zhigachev A.O., Umrikhin A.V., Korenkov V.V., Golovin Y.I. Low-temperature aging of baddeleyite-based CaTZP ceramics // J. Am. Ceram. Soc. 2017. V. 100. № 7. P. 3283. https://doi.org/10.1111/jace.14844.

12. Zhigachev A.O., Umrikhin A.V., Golovin Yu.I., Farber B.Ya. Preparation of nanocrystalline calcia-stabilized tetragonal zirconia by high – energy milling of baddeleyite // International J. Applied Ceramic Technology. 2015. V. 12. P. E82. https://doi.org/10.1111/ijac.12377.

13. Łabuz A., Lach R., Raczka M. et al. Processing and characterization of Ca-TZP nanoceramics // J. Europ. Ceram. Soc. 2015. V. 35. № 14. P. 3943. https://doi.org/10.1016/j. jeurceramsoc.2015.06.022.

14. Chang Y., Bermejo R., Ševeček O., Messing G.L. Design of alumina-zirconia composites with spatially tailored strength and toughness // J. Europ. Ceram. Soc.. 2015. V. 35. № 2. P. 631. https://doi.org/10.1016/j.jeurceramsoc.2014.09.017.

15. Kern F., Palmero P., Marro F.G., Mestra A. Processing of alumina–zirconia composites by surface modification route with enhanced hardness and wear resistance // Ceramics International. 2015. V. 41. P. 889. https://doi.org/10.1016/j.ceramint.2014.09.006.

16. Zhang F., Li L.-F., Wang E.-Z. Effect of micro-alumina content on mechanical properties of Al2 O3 /3Y-TZP composites // Ceramics International. 2015. V. 41. P. 12417. https://doi.org/10.1016/j.ceramint.2015.06.081.

17. Carbon Nanotube Reinforced Composites / Ed. Tjong S.C. Weinheim: WILEY-VCH Verlag GmbH &. KGaA, 2009. 228 p.

18. Zapata-Solvas E., Gomez-Garcia D., Domínguez-Rodriguez A. Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites // J. Eur. Ceram. Soc. 2012. V. 32. P. 3001. https://doi.org/10.1016/j.jeurceramsoc.2012.04.018.

19. Wu H., Pan W., Lin D., Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications // J. Advanced Ceramics. 2012. V. 1. № 1. P. 2. https://doi.org/10.1007/s40145-012-0002-4.

20. Sahoo N.G., Cheng H.K.F., Cai J. et al. Improvement of mechanical and thermal properties of carbon nanotube composite through nanotube functionalization and processing methods // Mater. Chem. Phys. 2009. V. 117. P. 313. https://doi.org/10.1016/j.matchemphys.2009.06.007.

21. Polo-Luque M.L., Simonet B.M., Valcárce M. Functionalization and dispersion of carbon nanotubes in ionic liquids // TrAC Trends in Analytical Chemistry. 2013. V. 47. № 6. P. 99. https://doi.org/10.1016/j.trac.2013.03.007.

22. Duh J.G., Wan J.U. Developments in highly toughened CeO2 -Y2 O3 -ZrO2 ceramic system // J. Mater. Sci. 1992. V. 27. P. 6197. https://doi.org/10.1007/BF01133771.

23. Melk L., Roa Rovira J.J., García-Marro F. et al. Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites // Ceramics International. 2015. V. 41. № 2. Pt A. P. 2453. https://doi.org/10.1016/j.ceramint.2014.10.060.

24. Kasperski A., Weibel A., Alkattan D. et al. Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties // Ceramics International. 2015. V. 41. P. 13731. https://doi.org/10.1016/j.ceramint.2015.08.034.

25. Poyato R., Gallardo-López A., Gutiérrez-Mora F. et al. Effect of high SWNT content on the room temperature mechanical properties of fully dense 3Y-TZP/SWNT composites // J. Europ. Ceram. Soc. 2014. V. 34. P. 1571. https://doi.org/10.1016/j.jeurceramsoc.2013.12.024.

26. Taheri M., Mazaheri M., Golestani-fard F. et al. High/room temperature mechanical properties of 3Y-TZP/CNTs composites // Ceramics International. 2014. V. 40. № 2. P. 3347. https://doi.org/10.1016/j.ceramint.2013.09.098.

27. Golovin Yu.I., Tyurin A.I., Korenkov V.V. et al. Effect of Carbon Nanotubes on Strength Characteristics of Nanostructured Ceramic Composites for Biomedicine // Nanotechnologies in Russia. 2018. V. 13. № 3–4. P. 168. https://doi.org/10.1134/S1995078018020039.

28. Xue W., Xie Z., Yi J., Wang C.-A. Spark plasma sintering and characterization of 2Y-TZP ceramics // Ceramics International. 2015. V. 41. P. 4829. https://doi.org/10.1016/j.ceramint.2014.12.039.

29. Bocanegra-Bernal M.H., Dominguez-Rios C., Echeberria J. et al. Spark plasma sintering of multi-, single/doubleand single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? // Ceramics International. 2016. V. 42. № 1. P. 2054. https://doi.org/10.1016/j.ceramint.2015.09.060.

30. Bernard-Granger G., Addad A., Fantozzi G. et al. Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing // Acta Mater. 2010. V. 58. P. 3390. https://doi.org/10.1016/j. actamat.2010.02.013.

31. Sun J., Gao L., Li W. Colloidal processing of carbon nanotube/alumina composites // Chem. Mater. 2002. V. 14. P. 5169. https://doi.org/10.1021/cm020736q.

32. Hanzel O., Sedlácek J., Sajgalík P. New approach for distribution of carbon nanotubes in alumina matrix // J. Europ. Ceram. Soc. 2014. V. 34. P. 1845. https://doi.org/10.1016/j.jeurceramsoc.2014.01.020.

33. Yamamoto G., Omori M., Hashida T., Kimura H. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties // Nanotechnology. 2008. V. 19. P. 315708.

34. Yi J., Wang T., Xie Z., Xue W. Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes // J. Alloys Compd. 2013. V. 581. P. 452. https://doi.org/10.1016/j.jallcom.2013.06.169.

35. Chevalier J., Gremillard L., Virkar A.V., Clarke D.R. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends // J. Am. Ceram. Soc. 2009. V. 92. P. 1901. https://doi.org/10.1111/j.1551- 2916.2009.03278.x.

36. Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules // Chem. Mater. 2004. V. 16. P. 3988. https://doi.org/10.1021/cm040167h.

37. Lughi V., Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry // Dental Mater. 2010. V. 26. P. 807. https://doi.org/10.1016/j.dental.2010.04.006.

38. Gremillard L., Chevalier J., Epicier T. et al. Modeling the aging kinetics of zirconia ceramics // J. Eur. Ceram. Soc. 2004. V. 24. P. 3483. https://doi.org/10.1016/j. jeurceramsoc.2003.11.025.

39. Pereira G.K.R., Muller C., Wandscher V.F. et al. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics // J. Mechanical Behavior of Biomedical Materials. 2016. V. 60. P. 324. https://doi.org/10.1016/j.jmbbm.2016.02.017.

40. Ban S., Suehiro Y., Nakanishi H., Nawa M. Fracture toughness of dental zirconia before and after autoclaving // J. Ceram. Soc. Jpn. 2010. V. 118. № 6. P. 406. https://doi.org/10.2109/jcersj2.118.406.

41. Eichler J., Rodel J., Eisele U., Hoffman M. Effect of Grain Size on Mechanical Properties of Submicrometer 3YTZP: Fracture Strength and Hydrothermal Degradation // J. Am. Ceram. Soc. 2007. V. 90. № 9. P. 2830. https://doi.org/10.1111/j.1551-2916.2007.01643.x.

42. Lin J.-D., Duh J.-G., Lo C.-L. Mechanical properties and resistance to hydrothermal aging of ceria- and yttriadoped tetragonal zirconia ceramics // Mater. Chem. Phys. 2002. V. 77. P. 808. https://doi.org/10.1016/S0254- 0584(02)00161-X.

43. Garmendia N., Grandjean S., Chevalier J. et al. Zirconia–multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance // J. Eur. Ceram. Soc. 2011. V. 31. P. 1009. https://doi.org/10.1016/j.jeurceramsoc.2010.12.029.

44. Zhang F., Vanmeensel K., Inokoshi M. et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations // J. Europ. Ceram. Soc. 2015. V. 35. P. 741. https://doi.org/10.1016/j.jeurceramsoc.2014.09.018.

45. Morales-Rodríguez A., Poyato R., Gutiérrez-Mora F. et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals // Ceramics International. 2018. V. 44. № 15. P. 17716. https://doi.org/10.1016/j. ceramint.2018.06.238.

46. Калинников В.Т., Лебедев В.Р., Локшин Э.П. и др. Технология получения диоксида циркония особой чистоты из бадделеитового концентрата АО «Ковдорский ГОК» // Физико-химические проблемы создания новых конструкционных керамических материалов. Сыктывкар. 2002. С. 227.

47. Poyato R., Vasiliev A.L., Padture N.P. et al. Aqueous colloidal processing of single–wall carbon nanotubes and their composites with ceramics // Nanotech. 2006. V. 17. P. 1770.

48. Fischer H., Waindich A., Telle R. Influence of preparation of ceramic SEVNB specimens on fracture toughness testing results // Dent. Mater. 2008. V. 24. P. 618. https://doi.org/10.1016/j.dental.2007.06.021.

49. Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements // J. Am. Ceram. Soc. 1981. V. 64. P. 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

50. Peykov D., Martin E., Chromic R.R. et al. Evaluation of strain rate sensitivity by constant load nanoindentation // J. Mater. Sci. 2012. V. 47. P. 7189. https://doi.org/10.1007/s10853-012-6665-y.

51. Lu K. Sintering of nanoceramics // Int. Mat. Rev. 2008. V. 53. P. 21. https://doi.org/10.1179/174328008X254358.

52. Chintapalli R., Mestra A., García Marro F. et al. Stability of nanocrystalline spark plasma sintered 3Y-TZP // Materials. 2010. V. 3. P. 800. https://doi.org/10.3390/ma3020800.

53. Estili M., Sakka Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites // Sci. Technol. Adv. Mater. 2014. V. 15. P. 064902. https://doi.org/10.1088/1468- 6996/15/6/064902.

54. Douillard T., Chevalier J., Descamps-Mandine A. et al. Comparative ageing behaviour of commercial, unworn and worn 3Y-TZP and zirconia-toughened alumina hip joint heads // J. Europ. Ceram. Soc. 2012. V. 32. P. 1529. https://doi.org/10.1016/j.jeurceramsoc.2012.01.003.

55. Chevalier J., Gremillard L., Deville S. Low-temperature degradation of zirconia and implications for biomedical implants // Annu. Rev. Mater. Res.2007. V. 37. P. 1. https:// doi.org/10.1146/annurev.matsci.37.052506.084250.

56. Lopes A.C.O., Coelho P.G., Witek L. et al. Nanomechanical and microstructural characterization of a zirconia-toughened alumina composite after aging // Ceramics International. 2019. V. 45. № 7. Pt A. P. 8840. https://doi.org/10.1016/j.ceramint.2019.01.211.

57. Camposilvan E., Leone R., Gremillard L. et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications // Dental Materials. 2018. V. 34. № 6. P. 879. https://doi.org/10.1016/j.dental.2018.03.006.

58. Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes // Physics Reports. 2005. V. 409. P. 47. https://doi.org/10.1016/j.physrep.2004.10.006.

59. Lamnini S., Károly Z., Bódis E. et al. Influence of structure on the hardness and the toughening mechanism of the sintered 8YSZ/MWCNTs composites // Ceramics International. 2019. V. 45. № 4. P. 5058. https://doi.org/10.1016/j.ceramint.2018.11.207.

60. Chintapalli R.K., Marro F.G., Milsom B. et al. Processing and characterization of high-density zirconia–carbon nanotube composites // Mater. Sci. Eng. A. 2012. V. 549. P. 50. https://doi.org/10.1016/j.msea.2012.03.115.

61. Gaillard F., Jimenez-Pique E., Soldera F. et al. Quantification of hydrothermal degradation in zirconia by nanoindentation // Acta Mater. 2008. V. 56. № 16. P. 4206. https://doi.org/10.1016/j.actamat.2008.04.050.

62. Munoz-Tabares J.A., Jimenez-Pique E., Anglada M. Subsurface evaluation of hydrothermal degradation of zirconia // Acta Mater. 2011. V. 59. P. 473. https://doi.org/10.1016/j.actamat.2010.09.047.

63. Chan S.-K., Fang Y., Grimsditch M. et al. Temperature dependence of the elastic moduli of monoclinic zirconia // J. Am. Ceram. Soc. 1991. V. 74. P. 1742. https://doi.org/10.1111/j.1151-2916.1991.tb07177.x.

64. Ponton C.B., Rawlings R.D. Vickers indentation fracture toughness test. Part 2. Application and critical evaluation of standardized indentation toughness equations // Mater. Sci. Technol. 1989. V. 5. P. 961. https://doi.org/10.1179/ mst.1989.5.10.961.

65. Morell R. Fracture Toughness Testing for Advanced Technical Ceramics. Internationally Agreed Good Practice // Adv. Appl. Ceram. 2006. V. 105. P. 1. https://doi.org/10.1179/174367606X84422.

66. Wang A., Hu P., Zhang X. et al. Accurate measurement of fracture toughness in structural ceramics // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 4207. https://doi.org/10.1016/j. jeurceramsoc.2017.05.027.

67. Bec S., Tonck A., Loubet J.L. A simple guide to determine elastic properties of films on substrate from nanoindentation experiments // Philosophical Magazine. 2006. V. 86. № 22–25. P. 5347. https://doi.org/10.1080/1478630600660856.

68. Joslin D.L., Oliver W.C. A new method for analyzing data from continuous depth-sensing microindentation tests // J. Mater. Res. 1990. V. 5. № 1. P. 123. https://doi.org/10.1557/JMR.1990.0123.

69. Bocanegra-Bernal M.H., Echeberria J., Ollo J. et al. A comparison of the effects of multi-wall and singlewall carbon nanotube additions on the properties of zirconia toughened alumina composites // Carbon. 2011. V. 49. P. 1599. https://doi.org/10.1016/j. carbon.2010.12.042.

70. Duszova A., Dusza J., Tomasek K. et al. Microstructure and properties of carbon nanotube/zirconia composite // J. Europ. Ceram. Soc. 2008. V. 28. P. 1023. https://doi.org/10.1016/j.jeurceramsoc.2007.09.011.

71. Sun J., Gao L., Iwasa M. et al. Failure investigation of carbon nanotube/3Y-TZP nanocomposites // Ceramics International. 2005. V. 31. P. 1131. https://doi.org/10.1016/j.ceramint.2004.11.010.

Title in english. 2019; 14: 37-49

Low-temperature degradation of composite ATZ ceramics reinforced by multi-wall carbon nanotubes

Korenkov V. V., Tyurin A. I., Rodaev V. V., Zhigachev A. O., Umrikhin A. V., Pirozhkova T. S., Golovin Y. I.

https://doi.org/10.21517/1992-7223-2019-5-6-37-49

Abstract

Low-temperature degradation of composite ATZ ceramics reinforced by multi-wall carbon nanotubes.

References

1. Maji A., Choubey G. Microstructure and Mechanical Properties of Alumina Toughened Zirconia (ATZ) // Materials Today: Proceedings. 2018. V. 5. P. 7457. https://doi.org/10.1016/j.matpr.2017.11.417.

2. Exare C., Kiat J.-M., Guiblin N. et al. Structural evolution of ZTA composites during synthesis and processing // J. Europ. Ceram. Soc. 2015. V. 35. P. 1273. https://doi.org/10.1016/j.jeurceramsoc.2014.10.031.

3. Basu B., Balani K. Advanced Structural Ceramics. Wiley, 2011. 512 p.

4. Nevarez-Rascon A., Aguilar-Elguezabal A., Orrantia E., Bocanegra-Bernal M. On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2 O3 and ZrO2 content // Int. J. Refract. Metals Hard Mater. 2009. V. 27. № 6. P. 962. https://doi.org/10.1016/j.ijrmhm.2009.06.001.

5. Naglieri V., Palmero P., Montanaro L., Chevalier J. Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties // Mater. 2013. V. 6. P. 2090. https://doi.org/10.3390/ma6052090.

6. Evans A.G., Cannon R.M. Toughening of brittle solids by martensitic transformations. Overview No. 48 // Acta Metall. 1986. V. 34. P. 761. https://doi.org/10.1016/0001-6160(86)90052-0.

7. Gupta T.K., Bechtold J.H., Kuznicki R.C. et al. Stabilization of tetragonal phase in polycrystalline zirconia // J. Mater. Sci. 1977. V. 12. № 12. P. 2421. https://doi.org/10.1007/BF00553928.

8. Basu B., Vleugels J., Van Der Biest O. Transformation behaviour of tetragonal zirconia: role of dopant content and distribution // Mater. Sci. Eng. A. 2004. V. 366. P. 338. https://doi.org/10.1016/j.msea.2003.08.063.

9. Cruz S.A., Poyato R., Cumbrera F.L., Odriozola J.A. Nanostructured Spark Plasma Sintered Ce-TZP Ceramics // J. Am. Ceram. Soc. 2012. V. 95. № 3. P. 901. https://doi.org/10.1111/j.1551-2916.2011.04978.x.

10. Zhigachev A.O., Umrikhin A.V., Golovin Yu.I. The effect of calcia content on phase composition and mechanical properties of Ca-TZP prepared by high-energy milling of baddeleyite // Ceramics International. 2015. V. 41. № 10A. P. 13804. https://doi.org/10.1016/j. ceramint.2015.08.063.

11. Zhigachev A.O., Umrikhin A.V., Korenkov V.V., Golovin Y.I. Low-temperature aging of baddeleyite-based CaTZP ceramics // J. Am. Ceram. Soc. 2017. V. 100. № 7. P. 3283. https://doi.org/10.1111/jace.14844.

12. Zhigachev A.O., Umrikhin A.V., Golovin Yu.I., Farber B.Ya. Preparation of nanocrystalline calcia-stabilized tetragonal zirconia by high – energy milling of baddeleyite // International J. Applied Ceramic Technology. 2015. V. 12. P. E82. https://doi.org/10.1111/ijac.12377.

13. Łabuz A., Lach R., Raczka M. et al. Processing and characterization of Ca-TZP nanoceramics // J. Europ. Ceram. Soc. 2015. V. 35. № 14. P. 3943. https://doi.org/10.1016/j. jeurceramsoc.2015.06.022.

14. Chang Y., Bermejo R., Ševeček O., Messing G.L. Design of alumina-zirconia composites with spatially tailored strength and toughness // J. Europ. Ceram. Soc.. 2015. V. 35. № 2. P. 631. https://doi.org/10.1016/j.jeurceramsoc.2014.09.017.

15. Kern F., Palmero P., Marro F.G., Mestra A. Processing of alumina–zirconia composites by surface modification route with enhanced hardness and wear resistance // Ceramics International. 2015. V. 41. P. 889. https://doi.org/10.1016/j.ceramint.2014.09.006.

16. Zhang F., Li L.-F., Wang E.-Z. Effect of micro-alumina content on mechanical properties of Al2 O3 /3Y-TZP composites // Ceramics International. 2015. V. 41. P. 12417. https://doi.org/10.1016/j.ceramint.2015.06.081.

17. Carbon Nanotube Reinforced Composites / Ed. Tjong S.C. Weinheim: WILEY-VCH Verlag GmbH &. KGaA, 2009. 228 p.

18. Zapata-Solvas E., Gomez-Garcia D., Domínguez-Rodriguez A. Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites // J. Eur. Ceram. Soc. 2012. V. 32. P. 3001. https://doi.org/10.1016/j.jeurceramsoc.2012.04.018.

19. Wu H., Pan W., Lin D., Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications // J. Advanced Ceramics. 2012. V. 1. № 1. P. 2. https://doi.org/10.1007/s40145-012-0002-4.

20. Sahoo N.G., Cheng H.K.F., Cai J. et al. Improvement of mechanical and thermal properties of carbon nanotube composite through nanotube functionalization and processing methods // Mater. Chem. Phys. 2009. V. 117. P. 313. https://doi.org/10.1016/j.matchemphys.2009.06.007.

21. Polo-Luque M.L., Simonet B.M., Valcárce M. Functionalization and dispersion of carbon nanotubes in ionic liquids // TrAC Trends in Analytical Chemistry. 2013. V. 47. № 6. P. 99. https://doi.org/10.1016/j.trac.2013.03.007.

22. Duh J.G., Wan J.U. Developments in highly toughened CeO2 -Y2 O3 -ZrO2 ceramic system // J. Mater. Sci. 1992. V. 27. P. 6197. https://doi.org/10.1007/BF01133771.

23. Melk L., Roa Rovira J.J., García-Marro F. et al. Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites // Ceramics International. 2015. V. 41. № 2. Pt A. P. 2453. https://doi.org/10.1016/j.ceramint.2014.10.060.

24. Kasperski A., Weibel A., Alkattan D. et al. Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties // Ceramics International. 2015. V. 41. P. 13731. https://doi.org/10.1016/j.ceramint.2015.08.034.

25. Poyato R., Gallardo-López A., Gutiérrez-Mora F. et al. Effect of high SWNT content on the room temperature mechanical properties of fully dense 3Y-TZP/SWNT composites // J. Europ. Ceram. Soc. 2014. V. 34. P. 1571. https://doi.org/10.1016/j.jeurceramsoc.2013.12.024.

26. Taheri M., Mazaheri M., Golestani-fard F. et al. High/room temperature mechanical properties of 3Y-TZP/CNTs composites // Ceramics International. 2014. V. 40. № 2. P. 3347. https://doi.org/10.1016/j.ceramint.2013.09.098.

27. Golovin Yu.I., Tyurin A.I., Korenkov V.V. et al. Effect of Carbon Nanotubes on Strength Characteristics of Nanostructured Ceramic Composites for Biomedicine // Nanotechnologies in Russia. 2018. V. 13. № 3–4. P. 168. https://doi.org/10.1134/S1995078018020039.

28. Xue W., Xie Z., Yi J., Wang C.-A. Spark plasma sintering and characterization of 2Y-TZP ceramics // Ceramics International. 2015. V. 41. P. 4829. https://doi.org/10.1016/j.ceramint.2014.12.039.

29. Bocanegra-Bernal M.H., Dominguez-Rios C., Echeberria J. et al. Spark plasma sintering of multi-, single/doubleand single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? // Ceramics International. 2016. V. 42. № 1. P. 2054. https://doi.org/10.1016/j.ceramint.2015.09.060.

30. Bernard-Granger G., Addad A., Fantozzi G. et al. Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing // Acta Mater. 2010. V. 58. P. 3390. https://doi.org/10.1016/j. actamat.2010.02.013.

31. Sun J., Gao L., Li W. Colloidal processing of carbon nanotube/alumina composites // Chem. Mater. 2002. V. 14. P. 5169. https://doi.org/10.1021/cm020736q.

32. Hanzel O., Sedlácek J., Sajgalík P. New approach for distribution of carbon nanotubes in alumina matrix // J. Europ. Ceram. Soc. 2014. V. 34. P. 1845. https://doi.org/10.1016/j.jeurceramsoc.2014.01.020.

33. Yamamoto G., Omori M., Hashida T., Kimura H. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties // Nanotechnology. 2008. V. 19. P. 315708.

34. Yi J., Wang T., Xie Z., Xue W. Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes // J. Alloys Compd. 2013. V. 581. P. 452. https://doi.org/10.1016/j.jallcom.2013.06.169.

35. Chevalier J., Gremillard L., Virkar A.V., Clarke D.R. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends // J. Am. Ceram. Soc. 2009. V. 92. P. 1901. https://doi.org/10.1111/j.1551- 2916.2009.03278.x.

36. Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules // Chem. Mater. 2004. V. 16. P. 3988. https://doi.org/10.1021/cm040167h.

37. Lughi V., Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry // Dental Mater. 2010. V. 26. P. 807. https://doi.org/10.1016/j.dental.2010.04.006.

38. Gremillard L., Chevalier J., Epicier T. et al. Modeling the aging kinetics of zirconia ceramics // J. Eur. Ceram. Soc. 2004. V. 24. P. 3483. https://doi.org/10.1016/j. jeurceramsoc.2003.11.025.

39. Pereira G.K.R., Muller C., Wandscher V.F. et al. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics // J. Mechanical Behavior of Biomedical Materials. 2016. V. 60. P. 324. https://doi.org/10.1016/j.jmbbm.2016.02.017.

40. Ban S., Suehiro Y., Nakanishi H., Nawa M. Fracture toughness of dental zirconia before and after autoclaving // J. Ceram. Soc. Jpn. 2010. V. 118. № 6. P. 406. https://doi.org/10.2109/jcersj2.118.406.

41. Eichler J., Rodel J., Eisele U., Hoffman M. Effect of Grain Size on Mechanical Properties of Submicrometer 3YTZP: Fracture Strength and Hydrothermal Degradation // J. Am. Ceram. Soc. 2007. V. 90. № 9. P. 2830. https://doi.org/10.1111/j.1551-2916.2007.01643.x.

42. Lin J.-D., Duh J.-G., Lo C.-L. Mechanical properties and resistance to hydrothermal aging of ceria- and yttriadoped tetragonal zirconia ceramics // Mater. Chem. Phys. 2002. V. 77. P. 808. https://doi.org/10.1016/S0254- 0584(02)00161-X.

43. Garmendia N., Grandjean S., Chevalier J. et al. Zirconia–multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance // J. Eur. Ceram. Soc. 2011. V. 31. P. 1009. https://doi.org/10.1016/j.jeurceramsoc.2010.12.029.

44. Zhang F., Vanmeensel K., Inokoshi M. et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations // J. Europ. Ceram. Soc. 2015. V. 35. P. 741. https://doi.org/10.1016/j.jeurceramsoc.2014.09.018.

45. Morales-Rodríguez A., Poyato R., Gutiérrez-Mora F. et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals // Ceramics International. 2018. V. 44. № 15. P. 17716. https://doi.org/10.1016/j. ceramint.2018.06.238.

46. Kalinnikov V.T., Lebedev V.R., Lokshin E.P. i dr. Tekhnologiya polucheniya dioksida tsirkoniya osoboi chistoty iz baddeleitovogo kontsentrata AO «Kovdorskii GOK» // Fiziko-khimicheskie problemy sozdaniya novykh konstruktsionnykh keramicheskikh materialov. Syktyvkar. 2002. S. 227.

47. Poyato R., Vasiliev A.L., Padture N.P. et al. Aqueous colloidal processing of single–wall carbon nanotubes and their composites with ceramics // Nanotech. 2006. V. 17. P. 1770.

48. Fischer H., Waindich A., Telle R. Influence of preparation of ceramic SEVNB specimens on fracture toughness testing results // Dent. Mater. 2008. V. 24. P. 618. https://doi.org/10.1016/j.dental.2007.06.021.

49. Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements // J. Am. Ceram. Soc. 1981. V. 64. P. 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

50. Peykov D., Martin E., Chromic R.R. et al. Evaluation of strain rate sensitivity by constant load nanoindentation // J. Mater. Sci. 2012. V. 47. P. 7189. https://doi.org/10.1007/s10853-012-6665-y.

51. Lu K. Sintering of nanoceramics // Int. Mat. Rev. 2008. V. 53. P. 21. https://doi.org/10.1179/174328008X254358.

52. Chintapalli R., Mestra A., García Marro F. et al. Stability of nanocrystalline spark plasma sintered 3Y-TZP // Materials. 2010. V. 3. P. 800. https://doi.org/10.3390/ma3020800.

53. Estili M., Sakka Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites // Sci. Technol. Adv. Mater. 2014. V. 15. P. 064902. https://doi.org/10.1088/1468- 6996/15/6/064902.

54. Douillard T., Chevalier J., Descamps-Mandine A. et al. Comparative ageing behaviour of commercial, unworn and worn 3Y-TZP and zirconia-toughened alumina hip joint heads // J. Europ. Ceram. Soc. 2012. V. 32. P. 1529. https://doi.org/10.1016/j.jeurceramsoc.2012.01.003.

55. Chevalier J., Gremillard L., Deville S. Low-temperature degradation of zirconia and implications for biomedical implants // Annu. Rev. Mater. Res.2007. V. 37. P. 1. https:// doi.org/10.1146/annurev.matsci.37.052506.084250.

56. Lopes A.C.O., Coelho P.G., Witek L. et al. Nanomechanical and microstructural characterization of a zirconia-toughened alumina composite after aging // Ceramics International. 2019. V. 45. № 7. Pt A. P. 8840. https://doi.org/10.1016/j.ceramint.2019.01.211.

57. Camposilvan E., Leone R., Gremillard L. et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications // Dental Materials. 2018. V. 34. № 6. P. 879. https://doi.org/10.1016/j.dental.2018.03.006.

58. Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes // Physics Reports. 2005. V. 409. P. 47. https://doi.org/10.1016/j.physrep.2004.10.006.

59. Lamnini S., Károly Z., Bódis E. et al. Influence of structure on the hardness and the toughening mechanism of the sintered 8YSZ/MWCNTs composites // Ceramics International. 2019. V. 45. № 4. P. 5058. https://doi.org/10.1016/j.ceramint.2018.11.207.

60. Chintapalli R.K., Marro F.G., Milsom B. et al. Processing and characterization of high-density zirconia–carbon nanotube composites // Mater. Sci. Eng. A. 2012. V. 549. P. 50. https://doi.org/10.1016/j.msea.2012.03.115.

61. Gaillard F., Jimenez-Pique E., Soldera F. et al. Quantification of hydrothermal degradation in zirconia by nanoindentation // Acta Mater. 2008. V. 56. № 16. P. 4206. https://doi.org/10.1016/j.actamat.2008.04.050.

62. Munoz-Tabares J.A., Jimenez-Pique E., Anglada M. Subsurface evaluation of hydrothermal degradation of zirconia // Acta Mater. 2011. V. 59. P. 473. https://doi.org/10.1016/j.actamat.2010.09.047.

63. Chan S.-K., Fang Y., Grimsditch M. et al. Temperature dependence of the elastic moduli of monoclinic zirconia // J. Am. Ceram. Soc. 1991. V. 74. P. 1742. https://doi.org/10.1111/j.1151-2916.1991.tb07177.x.

64. Ponton C.B., Rawlings R.D. Vickers indentation fracture toughness test. Part 2. Application and critical evaluation of standardized indentation toughness equations // Mater. Sci. Technol. 1989. V. 5. P. 961. https://doi.org/10.1179/ mst.1989.5.10.961.

65. Morell R. Fracture Toughness Testing for Advanced Technical Ceramics. Internationally Agreed Good Practice // Adv. Appl. Ceram. 2006. V. 105. P. 1. https://doi.org/10.1179/174367606X84422.

66. Wang A., Hu P., Zhang X. et al. Accurate measurement of fracture toughness in structural ceramics // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 4207. https://doi.org/10.1016/j. jeurceramsoc.2017.05.027.

67. Bec S., Tonck A., Loubet J.L. A simple guide to determine elastic properties of films on substrate from nanoindentation experiments // Philosophical Magazine. 2006. V. 86. № 22–25. P. 5347. https://doi.org/10.1080/1478630600660856.

68. Joslin D.L., Oliver W.C. A new method for analyzing data from continuous depth-sensing microindentation tests // J. Mater. Res. 1990. V. 5. № 1. P. 123. https://doi.org/10.1557/JMR.1990.0123.

69. Bocanegra-Bernal M.H., Echeberria J., Ollo J. et al. A comparison of the effects of multi-wall and singlewall carbon nanotube additions on the properties of zirconia toughened alumina composites // Carbon. 2011. V. 49. P. 1599. https://doi.org/10.1016/j. carbon.2010.12.042.

70. Duszova A., Dusza J., Tomasek K. et al. Microstructure and properties of carbon nanotube/zirconia composite // J. Europ. Ceram. Soc. 2008. V. 28. P. 1023. https://doi.org/10.1016/j.jeurceramsoc.2007.09.011.

71. Sun J., Gao L., Iwasa M. et al. Failure investigation of carbon nanotube/3Y-TZP nanocomposites // Ceramics International. 2005. V. 31. P. 1131. https://doi.org/10.1016/j.ceramint.2004.11.010.