Журналов:     Статей:        

Российские нанотехнологии. 2019; 14: 46-58

Биоразлагаемые композиции ультратонких волокон поли-3-гидроксибутирата с комплексами MnCl–тетрафенилпорфирин. Динамика, структура и свойства

Карпова С. Г., Ольхов А. А., Лобанов А. В., Попов А. А., Иорданский А. Л.

https://doi.org/10.21517/1992-7223-2019-3-4-46-58

Аннотация

Проведены комплексные исследования надмолекулярной структуры нетканых материалов на основе ультратонких волокон поли(3-гидроксибутирата), содержащих комплекс марганец–хлор тетрафенилпорфирин. Ультратонкие волокна получали методом электроформования. Концентрация комплекса в волокнах составляла 0–5%. Исследования проводили с помощью рентгеноструктурного анализа, зондового метода электронного парамагнитного резонанса, дифференциальной сканирующей калориметрии и сканирующей электронной микроскопии. Показано, что с ростом концентрации комплекса изменяется морфология полимерных волокон, наблюдается заметный рост степени кристалличности и замедляется молекулярная подвижность в плотных аморфных областях волокон поли(3-гидроксибутирата). Температурное воздействие (при 140°С) приводит к резкому возрастанию степени кристалличности и молекулярной подвижности в аморфных областях волокон. Экспозиция волокон в воде (при 70°С) приводит к значительному снижению энтальпии плавления и повышению молекулярной подвижности цепей в аморфных областях полимера. Полученные волокнистые материалы обладают высокими антибактериальными свойствами и должны найти непосредственное приложение при создании терапевтических систем антисептического и противоопухолевого действия.

Список литературы

1. Dubey K.A., Chaudhari C.V., Bhardwaj Y.K., Varshney L. Polymers, blends and nanocomposites for implants, scaffolds and controlled drug release applications // Advanced Structured Materials. 2017. V. 66. P. 1.

2. Ariga K., Vinu A., Miyahara M. Recent progresses in bioinorganic nanohybrids // Current Nanoscience. 2006. № 2. P. 197.

3. Mann J.L., Yu A.C., Agmon G., Appel E.A. Supramolecular polymeric biomaterials // Biomaterials Science. 2018. V. 6. P. 10.

4. LaVan D.A., McGuire T., Langer R. Small-scale systems for in vivo drug delivery // Nature Biotechnology. 2003. V. 21. P. 1184.

5. Ishihara T., Mizushima T. Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/ nanoparticles // Expert Opinion on Drug Delivery. 2010. V. 7. P. 565.

6. Haidar M.K., Erol H. Nanofibers: New insights for drug delivery and tissue Engineering // Current Topics in Medicinal Chemistry. 2017. V. 17. P. 1564.

7. Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique // Biotechnology Advances. 2010. V. 28. P. 325.

8. Streicher R.M., Schmidt M., Fiorito S. Nanosurfaces and nanostructures for artificial orthopedic implants // Nanomedicine. 2007. V. 2. P. 861.

9. Miguel S.P., Figueira D.R., Sim˜oes D. et al. Electrospun polymeric nanofibres as wound dressings: A review // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 60.

10. Zhou B., Li Y., Deng H. et al. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers // Colloids and Surfaces B: Biointerfaces. 2014. V. 116. P. 432.

11. Cheng H., Yang X., Che X. et al. Biomedical application and controlled drug release of electrospun fibrous materials // Materials Science and Engineering. 2018. V. 90. Р. 750.

12. Malafeev K.V., Moskalyuk O.A., Yudin V.E. et al. Synthesis and properties of fibers prepared from lactic acid–glycolic acid copolymer // Polymer Science. A. 2017. V. 59. P. 53.

13. Cao K., Liu Y., Olkhov A.A. et al. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery // Drug Deliv. Transl. Res. 2018. № 8. Р. 291.

14. Dorati R., DeTrizio A., Modena T. et al. Bio-degradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Ther apy // Pharmaceuticals. 2017. V. 10. № 4. P. E96. https://doi.org/10.3390/ph10040096.

15. Das S., Baker A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing // Frontiers in Bioengineering and Biotechnology. 2016. № 4. Р. 82.

16. Tran C.D., Duri S., Harkins A.L. Recyclable Synthesis, Characterization and antimicrobial activity of chitozan-based polysaccharide composite materials // J. Biomed. Mater. Res. A. 2013. № 8. Р. 2248. https://doi.org/10.1002/jbm.a.34520.

17. Филатов Ю.Н. Электроформование волокнистых материалов (ЭФВ-процесс). М.: Нефть и газ, 1997.

18. Liang Z., Freed J.H. An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules // J. Phys. Chem. B. 1999. № 10. Р. 6384.

19. Тимофеев В.П., Мишарин А.Ю., Ткачев Я.В. // Биофизика. 2011. Т. 56. С. 420.

20. Vasserman A.M., Buchachenko A.L., Kovarskii A.L., Neiman M.B. Study of molecular motion in polymers by the paramagnetic probe method // Polymer Science U.S.S.R. 1976. V. 10. P. 2238.

21. Bychkova A.V., Iordanskii A.L., Kosenko R.Y. et al. Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery // Nanotechnologies in Russia. 2015. V. 10. № 3–4. P. 325.

22. Vyazovkin S., Koga N., Schick C.V. Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics. Amsterdam; Boston; London: Elsevier, 2002.

23. Ol’khov A.A., Karpova S.G., Iordanskii A.L. et al. Effect of rolling on the structure of fibrous materials based on poly(3-hydroxybutyrate) and obtained by electrospinning // Fibre Chemistry. 2015. V. 46. № 5. P. 317.

24. Karpova S.G., Ol’khov A.A., Iordanskii А.А. et al. Structural Dynamic Properties of Nonwoven Composite Mixtures Based on Ultrafine Tissues of Poly(3-Hydroxybutyrate) with Chitosan // Russian J. Phys. Chem. B. 2016. V. 10. № 4. Р. 687.

25. Karpova S.G., Olkhov A.A., Bakirov A.V. et al. Poly(3-Hydroxybutyrate) Matrices Modified with Iron(III) Complexes with Tetraphenylporphy-rin. Analysis of the Structural Dynamic Parameters // Russian J. Phys. Chem. B. 2018. V. 12. № 1. Р. 142.

26. Karpova S.G., Ol’khov A.A., Krivandin A.V. et al. Effect of Zinc-Porphyrin Complex on the Structure and Properties of Poly(3-hydroxybutyrate) Ultrathin Fibers // Polymer Science. A. 2019. V. 61. № 1. Р. 70.

27. Озерин А.Н. Дис. … канд. хим. наук. М.: Научно-исследовательский физико-химический ин-т им. Л.Я. Карпова, 1977.

28. Tertyshnaya Y.V., Shibryaeva L.S. Degradation of poly(3- hydroxybuty-rate) and its blends during treatment with uv light and water // Polymer Science B. 2013. V. 55. № 3–4. P. 164.

29. Камаев П.П. Дис. … канд. хим. наук. М.: ИХФ РАН им. Н.Н. Семенова, 2001.

30. Iordanskii A.L., Ol’khov A.A., Karpova S.G. et al. Influence of the Structure and Morphology of Ultrathin Poly(3-hydroxybutyrate) Fibers on the Diffusion Kinetics and Transport of Drugs // Polymer Science. A. 2017. V. 59. № 3. P. 343.

Title in english. 2019; 14: 46-58

Poly-3-hydroxybutirate with MnCl-tetrafenylporphyrin complexes. Dynamics, structure and properties

Karpova S. G., Ol’khov A. A., Lobanov A. V., Popov A. A., Iordanskii A. L.

https://doi.org/10.21517/1992-7223-2019-3-4-46-58

Abstract

Comprehensive studies combining X-ray structural analysis, structural dynamic measurements with an EPR probe method, thermophysical measurements (DSC), and scanning electron microscopy have been carried out. The specificity of the crystalline and amorphous structure of ultra-thin poly (3-hydroxybutyrate) fibers containing a low concentration of manganese complex with chlorotetraphenyl porphyrin (MnCl-TFP) (0-5%), obtained by electroforming, is considered. It was shown that when PHB of MnCl-TTP complexes are added to PHB fibers, the morphology of the fibers changes, crystallinity increases, and the molecular mobility in the dense amorphous regions of the polymer slows down. The temperature effect on the fibers (annealing at 1400) leads to a sharp increase in crystallinity and molecular mobility in the amorphous regions of poly (3-hydroxybutyrate). Exposure of fibers in an aqueous medium at 700 leads to a sharp decrease in the enthalpy of melting and to an increase in the molecular mobility of the chains in the amorphous regions. The obtained fibrous materials have bactericidal properties and must be directly applied in the creation of therapeutic systems with antibacterial and antitumor action.

References

1. Dubey K.A., Chaudhari C.V., Bhardwaj Y.K., Varshney L. Polymers, blends and nanocomposites for implants, scaffolds and controlled drug release applications // Advanced Structured Materials. 2017. V. 66. P. 1.

2. Ariga K., Vinu A., Miyahara M. Recent progresses in bioinorganic nanohybrids // Current Nanoscience. 2006. № 2. P. 197.

3. Mann J.L., Yu A.C., Agmon G., Appel E.A. Supramolecular polymeric biomaterials // Biomaterials Science. 2018. V. 6. P. 10.

4. LaVan D.A., McGuire T., Langer R. Small-scale systems for in vivo drug delivery // Nature Biotechnology. 2003. V. 21. P. 1184.

5. Ishihara T., Mizushima T. Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/ nanoparticles // Expert Opinion on Drug Delivery. 2010. V. 7. P. 565.

6. Haidar M.K., Erol H. Nanofibers: New insights for drug delivery and tissue Engineering // Current Topics in Medicinal Chemistry. 2017. V. 17. P. 1564.

7. Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique // Biotechnology Advances. 2010. V. 28. P. 325.

8. Streicher R.M., Schmidt M., Fiorito S. Nanosurfaces and nanostructures for artificial orthopedic implants // Nanomedicine. 2007. V. 2. P. 861.

9. Miguel S.P., Figueira D.R., Sim˜oes D. et al. Electrospun polymeric nanofibres as wound dressings: A review // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 60.

10. Zhou B., Li Y., Deng H. et al. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers // Colloids and Surfaces B: Biointerfaces. 2014. V. 116. P. 432.

11. Cheng H., Yang X., Che X. et al. Biomedical application and controlled drug release of electrospun fibrous materials // Materials Science and Engineering. 2018. V. 90. R. 750.

12. Malafeev K.V., Moskalyuk O.A., Yudin V.E. et al. Synthesis and properties of fibers prepared from lactic acid–glycolic acid copolymer // Polymer Science. A. 2017. V. 59. P. 53.

13. Cao K., Liu Y., Olkhov A.A. et al. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery // Drug Deliv. Transl. Res. 2018. № 8. R. 291.

14. Dorati R., DeTrizio A., Modena T. et al. Bio-degradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Ther apy // Pharmaceuticals. 2017. V. 10. № 4. P. E96. https://doi.org/10.3390/ph10040096.

15. Das S., Baker A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing // Frontiers in Bioengineering and Biotechnology. 2016. № 4. R. 82.

16. Tran C.D., Duri S., Harkins A.L. Recyclable Synthesis, Characterization and antimicrobial activity of chitozan-based polysaccharide composite materials // J. Biomed. Mater. Res. A. 2013. № 8. R. 2248. https://doi.org/10.1002/jbm.a.34520.

17. Filatov Yu.N. Elektroformovanie voloknistykh materialov (EFV-protsess). M.: Neft' i gaz, 1997.

18. Liang Z., Freed J.H. An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules // J. Phys. Chem. B. 1999. № 10. R. 6384.

19. Timofeev V.P., Misharin A.Yu., Tkachev Ya.V. // Biofizika. 2011. T. 56. S. 420.

20. Vasserman A.M., Buchachenko A.L., Kovarskii A.L., Neiman M.B. Study of molecular motion in polymers by the paramagnetic probe method // Polymer Science U.S.S.R. 1976. V. 10. P. 2238.

21. Bychkova A.V., Iordanskii A.L., Kosenko R.Y. et al. Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery // Nanotechnologies in Russia. 2015. V. 10. № 3–4. P. 325.

22. Vyazovkin S., Koga N., Schick C.V. Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics. Amsterdam; Boston; London: Elsevier, 2002.

23. Ol’khov A.A., Karpova S.G., Iordanskii A.L. et al. Effect of rolling on the structure of fibrous materials based on poly(3-hydroxybutyrate) and obtained by electrospinning // Fibre Chemistry. 2015. V. 46. № 5. P. 317.

24. Karpova S.G., Ol’khov A.A., Iordanskii A.A. et al. Structural Dynamic Properties of Nonwoven Composite Mixtures Based on Ultrafine Tissues of Poly(3-Hydroxybutyrate) with Chitosan // Russian J. Phys. Chem. B. 2016. V. 10. № 4. R. 687.

25. Karpova S.G., Olkhov A.A., Bakirov A.V. et al. Poly(3-Hydroxybutyrate) Matrices Modified with Iron(III) Complexes with Tetraphenylporphy-rin. Analysis of the Structural Dynamic Parameters // Russian J. Phys. Chem. B. 2018. V. 12. № 1. R. 142.

26. Karpova S.G., Ol’khov A.A., Krivandin A.V. et al. Effect of Zinc-Porphyrin Complex on the Structure and Properties of Poly(3-hydroxybutyrate) Ultrathin Fibers // Polymer Science. A. 2019. V. 61. № 1. R. 70.

27. Ozerin A.N. Dis. … kand. khim. nauk. M.: Nauchno-issledovatel'skii fiziko-khimicheskii in-t im. L.Ya. Karpova, 1977.

28. Tertyshnaya Y.V., Shibryaeva L.S. Degradation of poly(3- hydroxybuty-rate) and its blends during treatment with uv light and water // Polymer Science B. 2013. V. 55. № 3–4. P. 164.

29. Kamaev P.P. Dis. … kand. khim. nauk. M.: IKhF RAN im. N.N. Semenova, 2001.

30. Iordanskii A.L., Ol’khov A.A., Karpova S.G. et al. Influence of the Structure and Morphology of Ultrathin Poly(3-hydroxybutyrate) Fibers on the Diffusion Kinetics and Transport of Drugs // Polymer Science. A. 2017. V. 59. № 3. P. 343.