Российские нанотехнологии. 2019; 14: 32-38
Керамический композит на основе диоксида циркония, армированный одностенными углеродными нанотрубками
Леонов А. А., Двилис Э. С., Хасанов О. Л., Пайгин В. Д., Калашников М. П., Петюкевич М. С., Панина А. А.
https://doi.org/10.21517/1992-7223-2019-3-4-32-38Аннотация
Исследовано влияние относительного содержания одностенных углеродных нанотрубок (ОУНТ) на уплотнение, фазовый состав, микроструктуру и физико-механические свойства композитов на основе стабилизированного иттрием диоксида циркония, полученных электроимпульсным плазменным спеканием. Обнаружено, что в композитах, содержащих 0.1 и 0.5 мас. % ОУНТ, наблюдается существенное повышение относительной плотности: с 98.26 до 99.98%. Установлено, что ОУНТ частично ограничивают моноклинно-тетрагональный переход при высокотемпературной обработке диоксида циркония. Трещиностойкость композита с 1 мас. % ОУНТ возрастает на 38% по сравнению с керамикой без добавок.
Список литературы
1. Hughes T.V., Chambers C.R. Manufacture of carbon filaments. US Patent № 405. 1889. 480 p.
2. Schutzenberger P., Schutzenberger L. Sur quelques faits relatifs l’histoire du carbone // Acad. Sci. Paris. 1890. V. 111. P. 774.
3. Радушкевич Л.В., Лукьянович В.М. О структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте // Журн. физ. химии. 1952. Т. 26. № 1. С. 88.
4. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. P. 56. https://doi.org/10.1038/354056a0.
5. Samal S.S., Bal S. Carbon nanotube reinforced ceramic matrix composite-a review // J. Min. Mater. Char. Eng. 2008. V. 7. P. 355. https://doi.org/10.4236/ jmmce.2008.74028.
6. Peigney A., Laurent C.H., Flahaut E., Rousset A. Carbon nanotubes in novel ceramic matrix nanocomposites // Ceram. Int. 2000. V. 26. P. 677. https://doi.org/10.1016/ S0272-8842(00)00004-3.
7. Yu M., Lourie O., Dyer M.J. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load // Science. 2000. V. 287. P. 637. https://doi. org/10.1126/science.287.5453.637.
8. Yu M., Files B.S., Arepalli S., Ruoff R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties // Phys. Rev. Lett. 2000. V. 84. P. 5552. https://doi.org/10.1103/PhysRevLett.84.5552.
9. Thess A., Lee R., Nikolaev P. et al. Crystalline ropes of metallic carbon nanotubes // Science. 1996. V. 273. P. 483. https://doi.org/10.1126/science.273.5274.483.
10. Ando Y., Zhao X., Shimoyama H. et al. Physical properties of multiwalled carbon nanotubes // Int. J. Inorg. Mater. 1999. V. 1. P. 77. https://doi.org/10.1016/S1463- 0176(99)00012-5.
11. Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes // Phys. Rev. Lett. 2000. V. 84. P. 4613. https://doi.org/10.1103/PhysRevLett.84.4613.
12. Kim P., Shi L., Majumdar A., McEuen P.L. Thermal transport measurements of individual multiwalled nanotubes // Phys. Rev. Lett. 2001. V. 87. P. 215502. https://doi.org/10.1103/PhysRevLett.87.215502.
13. Ляпунова Е.А., Григорьев М.В., Скачков А.П. и др. Композит на основе диоксида циркония, модифицированного углеродными нанотрубками: структура и механические свойства // Вестн. ПНИПУ. Механика. 2015. № 4. С. 308. https://doi.org/10.15593/perm. mech/2015.4.18.
14. Головин Ю.И., Фарбер Б.Я., Коренков В.В. и др. Механические свойства модифицированных углеродными нанотрубками нанокерамик из бадделеита // Вестн. ТГУ. Естественные и технические науки. 2012. Т. 17. № 3. С. 1380.
15. Leonov A.A. Microstructure and properties of single wall carbon nanotubes/zirconia composite // Химическая технология функциональных наноматериалов: сборник материалов международной конференции со школой и мастер-классами для молодых ученых, Москва, 30 ноября – 1 декабря 2017. Москва: РХТУ им. Д.И. Менделеева, 2017. C. 35.
16. Головин Ю.И., Тюрин А.И., Коренков В.В. и др. Влияние углеродных нанотрубок на прочностные характеристики наноструктурированных керамических композитов для биомедицины // Российские нанотехнологии. 2018. Т. 13. № 3–4. С. 64.
17. Shin J.H., Hong S.H. Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics // Mater. Sci. Eng. A. 2012. V. 556. P. 382. https://doi.org/10.1016/j.msea.2012.07.001.
18. Zhou J.P., Gong Q.M., Yuan K.Y. et al. The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol% yttria stabilized zirconia ceramics // Mat. Sci. Eng. A. 2009. V. 520. P. 153. https://doi.org/10.1016/j.msea.2009.05.014.
19. Leonov A. Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering // Materials Today: Proceedings. 2019. V. 11. P. 66. https://doi.org/10.1016/j. matpr.2018.12.108.
20. Leonov A.A., Abdulmenova E.V. Alumina-based composites reinforced with single-walled carbon nanotubes // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 511. P. 012001. https://doi.org/10.1088/1757-899X/511/1/012001.
21. Anstis G.R., Chantikul P., Lawn B.N., Marshall D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements // J. Am. Ceram. Soc. 1981. V. 64 P. 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
22. Kasperski A., Weibel A., Alkattan D. et al. Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering // Scr. Mater. 2013. V. 69. P. 338. https://doi.org/10.1016/j.scriptamat.2013.05.015.
23. Hassan R., Nisar A., Ariharan S. et al. Multi-functionality of carbon nanotubes reinforced 3 mol% yttria stabilized zirconia structural biocomposites // Mater. Sci. Eng. A. 2017. V. 704. P. 329. https://doi.org/10.1016/j. msea.2017.08.039.
24. Mazaheri M., Mari D., Hesabi Z.R. et al. Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature // Compos. Sci. Technol. 2011. V. 71. P. 939. https://doi.org/10.1016/j.compscitech.2011.01.017.
25. Shen L., Han Y.H., Xiang C. et al. Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering // Scr. Mater. 2013. V. 69. P. 736. https://doi.org/10.1016/j. scriptamat.2013.08.015.
26. Melk L., Roa Rovira J.J., García–Marro F. et al. Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites // Ceram. Int. 2015. V. 41. P. 2453. https://doi.org/10.1016/j.ceramint.2014.10.060.
27. Poyato R., Macías-Delgado J., Gallardo-López A. et al. Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites // Ceram. Int. 2015. V. 41. P. 12861. https://doi.org/10.1016/j.ceramint.2015.06.123.
28. Poyato R., Gallardo-López A., Gutiérrez-Mora F. et al. Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites // J. Eur. Ceram. Soc. 2014. V. 34. P. 1571. https://doi.org/10.1016/j.jeurceramsoc.2013.12.024.
29. Bocanegra-Bernal M.H., Reyes-Rojas A., Aguilar-Elguézabal A. et al. X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites // Int. J. Refract. Met. Hard Mater. 2012. V. 35. P. 315. https://doi.org/10.1016/j.ijrmhm.2012.07.004.
30. Leonov A.A., Khasanov A.O., Danchenko V.A., Khasanov O.L. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 286. P. 012034. https://doi.org/10.1088/1757-899X/286/1/012034.
31. Yamamoto G., Sato Y., Takahashi T. et al. Preparation of single-walled carbon nanotube solids and their mechanical properties // J. Mater. Res. 2005. V. 20. P. 2609. https://doi.org/10.1557/JMR.2005.0345.
32. Datye A., Wu K., Gomes G. et al. Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)–multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles // Compos. Sci. Technol. 2010. V. 70. P. 2086. https://doi.org/10.1016/j. compscitech.2010.08.005.
33. Poyato R., Macías-Delgado J., García-Valenzuela A. et al. Mechanical and electrical properties of low SWNT content 3YTZP composites // J. Eur. Ceram. Soc. 2015. V. 35. P. 2351. https://doi.org/10.1016/j. jeurceramsoc.2015.02.022.
34. Kasperski A., Weibel A., Alkattan D. et al. Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties // Ceram. Int. 2015. V. 41. P. 13731. https://doi.org/10.1016/j.ceramint.2015.08.034.
35. Suárez G., Jang B.K., Aglietti E.F., Sakka Y. Fabrication of dense ZrO2 /CNT composites: Influence of bead-milling treatment // Metall. Mater. Trans. A. 2013. V. 44. P. 4374. https://doi.org/10.1007/s11661-013-1775-y.
Title in english. 2019; 14: 32-38
Zirconia-based composite reinforced with single-wall carbon nanotubes
Leonov A. A., Dvilis E. S., Khasanov O. L., Paygin V. D., Kalashnikov M. P., Petukevich M. S., Panina A. A.
https://doi.org/10.21517/1992-7223-2019-3-4-32-38Abstract
In this work, the effect of single-walled carbon nanotubes (SWCNT) content on the compaction, phase composition, microstructure, and mechanical properties of composites based on yttria-stabilized zirconia, produced by spark plasma sintering were investigated. It was found that in composites with 0.1 and 0.5 wt. % SWCNT, a significant increase the relative density was observed: from 98.26 to 99.98 %. It has been established that carbon nanotubes partially limit the monoclinic-tetragonal transition during high-temperature treatment of zirconia. The fracture toughness of the composite with 1 wt. % SWCNT increases by 38 % compared to ceramics without additives.
References
1. Hughes T.V., Chambers C.R. Manufacture of carbon filaments. US Patent № 405. 1889. 480 p.
2. Schutzenberger P., Schutzenberger L. Sur quelques faits relatifs l’histoire du carbone // Acad. Sci. Paris. 1890. V. 111. P. 774.
3. Radushkevich L.V., Luk'yanovich V.M. O strukture ugleroda, obrazuyushchegosya pri termicheskom razlozhenii okisi ugleroda na zheleznom kontakte // Zhurn. fiz. khimii. 1952. T. 26. № 1. S. 88.
4. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. P. 56. https://doi.org/10.1038/354056a0.
5. Samal S.S., Bal S. Carbon nanotube reinforced ceramic matrix composite-a review // J. Min. Mater. Char. Eng. 2008. V. 7. P. 355. https://doi.org/10.4236/ jmmce.2008.74028.
6. Peigney A., Laurent C.H., Flahaut E., Rousset A. Carbon nanotubes in novel ceramic matrix nanocomposites // Ceram. Int. 2000. V. 26. P. 677. https://doi.org/10.1016/ S0272-8842(00)00004-3.
7. Yu M., Lourie O., Dyer M.J. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load // Science. 2000. V. 287. P. 637. https://doi. org/10.1126/science.287.5453.637.
8. Yu M., Files B.S., Arepalli S., Ruoff R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties // Phys. Rev. Lett. 2000. V. 84. P. 5552. https://doi.org/10.1103/PhysRevLett.84.5552.
9. Thess A., Lee R., Nikolaev P. et al. Crystalline ropes of metallic carbon nanotubes // Science. 1996. V. 273. P. 483. https://doi.org/10.1126/science.273.5274.483.
10. Ando Y., Zhao X., Shimoyama H. et al. Physical properties of multiwalled carbon nanotubes // Int. J. Inorg. Mater. 1999. V. 1. P. 77. https://doi.org/10.1016/S1463- 0176(99)00012-5.
11. Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes // Phys. Rev. Lett. 2000. V. 84. P. 4613. https://doi.org/10.1103/PhysRevLett.84.4613.
12. Kim P., Shi L., Majumdar A., McEuen P.L. Thermal transport measurements of individual multiwalled nanotubes // Phys. Rev. Lett. 2001. V. 87. P. 215502. https://doi.org/10.1103/PhysRevLett.87.215502.
13. Lyapunova E.A., Grigor'ev M.V., Skachkov A.P. i dr. Kompozit na osnove dioksida tsirkoniya, modifitsirovannogo uglerodnymi nanotrubkami: struktura i mekhanicheskie svoistva // Vestn. PNIPU. Mekhanika. 2015. № 4. S. 308. https://doi.org/10.15593/perm. mech/2015.4.18.
14. Golovin Yu.I., Farber B.Ya., Korenkov V.V. i dr. Mekhanicheskie svoistva modifitsirovannykh uglerodnymi nanotrubkami nanokeramik iz baddeleita // Vestn. TGU. Estestvennye i tekhnicheskie nauki. 2012. T. 17. № 3. S. 1380.
15. Leonov A.A. Microstructure and properties of single wall carbon nanotubes/zirconia composite // Khimicheskaya tekhnologiya funktsional'nykh nanomaterialov: sbornik materialov mezhdunarodnoi konferentsii so shkoloi i master-klassami dlya molodykh uchenykh, Moskva, 30 noyabrya – 1 dekabrya 2017. Moskva: RKhTU im. D.I. Mendeleeva, 2017. C. 35.
16. Golovin Yu.I., Tyurin A.I., Korenkov V.V. i dr. Vliyanie uglerodnykh nanotrubok na prochnostnye kharakteristiki nanostrukturirovannykh keramicheskikh kompozitov dlya biomeditsiny // Rossiiskie nanotekhnologii. 2018. T. 13. № 3–4. S. 64.
17. Shin J.H., Hong S.H. Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics // Mater. Sci. Eng. A. 2012. V. 556. P. 382. https://doi.org/10.1016/j.msea.2012.07.001.
18. Zhou J.P., Gong Q.M., Yuan K.Y. et al. The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol% yttria stabilized zirconia ceramics // Mat. Sci. Eng. A. 2009. V. 520. P. 153. https://doi.org/10.1016/j.msea.2009.05.014.
19. Leonov A. Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering // Materials Today: Proceedings. 2019. V. 11. P. 66. https://doi.org/10.1016/j. matpr.2018.12.108.
20. Leonov A.A., Abdulmenova E.V. Alumina-based composites reinforced with single-walled carbon nanotubes // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 511. P. 012001. https://doi.org/10.1088/1757-899X/511/1/012001.
21. Anstis G.R., Chantikul P., Lawn B.N., Marshall D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements // J. Am. Ceram. Soc. 1981. V. 64 P. 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
22. Kasperski A., Weibel A., Alkattan D. et al. Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering // Scr. Mater. 2013. V. 69. P. 338. https://doi.org/10.1016/j.scriptamat.2013.05.015.
23. Hassan R., Nisar A., Ariharan S. et al. Multi-functionality of carbon nanotubes reinforced 3 mol% yttria stabilized zirconia structural biocomposites // Mater. Sci. Eng. A. 2017. V. 704. P. 329. https://doi.org/10.1016/j. msea.2017.08.039.
24. Mazaheri M., Mari D., Hesabi Z.R. et al. Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature // Compos. Sci. Technol. 2011. V. 71. P. 939. https://doi.org/10.1016/j.compscitech.2011.01.017.
25. Shen L., Han Y.H., Xiang C. et al. Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering // Scr. Mater. 2013. V. 69. P. 736. https://doi.org/10.1016/j. scriptamat.2013.08.015.
26. Melk L., Roa Rovira J.J., García–Marro F. et al. Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites // Ceram. Int. 2015. V. 41. P. 2453. https://doi.org/10.1016/j.ceramint.2014.10.060.
27. Poyato R., Macías-Delgado J., Gallardo-López A. et al. Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites // Ceram. Int. 2015. V. 41. P. 12861. https://doi.org/10.1016/j.ceramint.2015.06.123.
28. Poyato R., Gallardo-López A., Gutiérrez-Mora F. et al. Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites // J. Eur. Ceram. Soc. 2014. V. 34. P. 1571. https://doi.org/10.1016/j.jeurceramsoc.2013.12.024.
29. Bocanegra-Bernal M.H., Reyes-Rojas A., Aguilar-Elguézabal A. et al. X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites // Int. J. Refract. Met. Hard Mater. 2012. V. 35. P. 315. https://doi.org/10.1016/j.ijrmhm.2012.07.004.
30. Leonov A.A., Khasanov A.O., Danchenko V.A., Khasanov O.L. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 286. P. 012034. https://doi.org/10.1088/1757-899X/286/1/012034.
31. Yamamoto G., Sato Y., Takahashi T. et al. Preparation of single-walled carbon nanotube solids and their mechanical properties // J. Mater. Res. 2005. V. 20. P. 2609. https://doi.org/10.1557/JMR.2005.0345.
32. Datye A., Wu K., Gomes G. et al. Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)–multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles // Compos. Sci. Technol. 2010. V. 70. P. 2086. https://doi.org/10.1016/j. compscitech.2010.08.005.
33. Poyato R., Macías-Delgado J., García-Valenzuela A. et al. Mechanical and electrical properties of low SWNT content 3YTZP composites // J. Eur. Ceram. Soc. 2015. V. 35. P. 2351. https://doi.org/10.1016/j. jeurceramsoc.2015.02.022.
34. Kasperski A., Weibel A., Alkattan D. et al. Double-walled carbon nanotube/zirconia composites: Preparation by spark plasma sintering, electrical conductivity and mechanical properties // Ceram. Int. 2015. V. 41. P. 13731. https://doi.org/10.1016/j.ceramint.2015.08.034.
35. Suárez G., Jang B.K., Aglietti E.F., Sakka Y. Fabrication of dense ZrO2 /CNT composites: Influence of bead-milling treatment // Metall. Mater. Trans. A. 2013. V. 44. P. 4374. https://doi.org/10.1007/s11661-013-1775-y.
События
-
Конференция Антиплагиат «Value Guard Conference» 14 октября 2025 >>>
1 окт 2025 | 10:14 -
К платформе Elpub присоединился журнал «Международный аспирантский вестник. Русский язык за рубежом» >>>
29 сен 2025 | 13:29 -
Журнал «Спутник 2.0. Россия в мире» присоединился к Elpub! >>>
26 сен 2025 | 13:27 -
К платформе Elpub присоединился журнал «Русский язык за рубежом» >>>
26 сен 2025 | 13:27 -
Журнал «Цифровые решения и технологии искусственного интеллекта» присоединился к Elpub >>>
23 сен 2025 | 12:37