Российские нанотехнологии. 2017; 12: 119-131
НАНОКАПИЛЛЯРЫ — УНИВЕРСАЛЬНЫЙ ИНСТРУМЕНТ ДЛЯ СОВРЕМЕННЫХ БИОМЕДИЦИНСКИХ ПРИЛОЖЕНИЙ
Усманов А. Р., Ерофеев А. С., Горелкин П. В., Корчев Ю. Е., Мажуга А. Г.
Аннотация
В статье рассмотрены современные тенденции использования нанокапилляров и возможности, которые они открывают, при проведении исследований в области биологии и медицины. Нанокапилляры могут быть использованы для получения топографии живых клеток с высоким разрешением при физиологических условиях, осуществлять контролируемую доставку веществ различной природы вблизи или внутрь микро- и нанообъектов, а также для построения различных типов биосенсоров.
Список литературы
1. Takami T., Park B.H., Kawai T. Nanopipette exploring nanoworld // Nano convergence. 2014. V. 1:17.
2. The Nobel Prize in Physiology or Medicine 1991. Nobel Media AB. Retrieved, 2014.
3. Gates B.D. et. al. New approaches to nanofabrication: molding, printing, and other techniques // Chem Rev. 2005. V. 105. P. 1171–1196.
4. Levis J.L. et. al. A method for exceptionally low noise single channel recordings // Pflügers Arch. Eur. J. Physiol. 1992. V. 420. P. 618–620.
5. Zuazaga C., Steinacker A. Patch-clamp recording of ion channels: interfering effects of patch pipette glass // News Physiol. Sci. 1990. V. 65. P. 1666–1677.
6. Karhanek M. et. al. Single DNA molecule detection using nanopipettes and nanoparticles // Nano Lett. 2005. V. 5. P. 403–407.
7. Kim B.M. et. al. The fabrication of integrated carbon pipes with submicron diameters // Nanotechnology. 2005. V. 16. P. 1317–1320.
8. Freedman J.R. et. al. Magnetically assembled carbon nanotube tipped pipettes // Appl. Phys. Lett. 2007. V. 90. P. 103–108.
9. Hansma P.K. et al. The scanning ion-conductance microscope // Science. 1989. V. 243. P. 641–643.
10. Chen C.C. et al. Scanning ion conductance microscopy // Annu. Rev. Anal. Chem. (Palo Alto. Calif). 2012. V. 5. P. 207–208.
11. Gorelik J. et al. Dynamic assembly of surface structures in living cells // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 5819–5822.
12. Novak P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy // Nature Methods. 2009. V. 60. P. 279–281.
13. Ares P. et. al. High resolution atomic force microscopy of double-stranded RNA // Nanoscale. 2016. V. 8. P. 11818–11826.
14. Mikihiro Shibata et. al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin // Nature Nanotechnology. 2010. V. 5. P. 208–212.
15. Shevchuk A et. al. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy // Angew Chem. Int. Ed. Engl. 2006. V. 45. P. 2212–2226.
16. Zhang Y. et. al. High-resolution imaging and nano manipulation of biological structures on surface // Microsc. Res. Tech. 2011. V. 74. P. 614–626.
17. Daniel Sánchez et al. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure // Applied via a Pipette Biophys J. 2008. V. 95. P. 3017–3027.
18. Ushiki T. et al. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy // Micron. 2012. V. 43. № 12. P. 1390–1398.
19. Novak P. et al. Imaging Single Nanoparticle Interactions with Human Lung Cells Using Fast Ion Conductance Microscopy // Nano Lett. 2014. V. 14. № 3. P. 1202–1207.
20. Novak P. et al. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels // Neuron. 2013. V. 79 № 6. P. 1067–1077.
21. Klemic K. G. et al. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells // Biosens. Bioelectron. 2002 V. 17. P. 597–604.
22. Zhao Y. Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering // Proc. IMechE. V. 222. Part N: J. Nanoengineering and Nanosystems
23. Shevchuk A. et al. Angular Approach Scanning Ion Conductance Microscopy // Biophys. J. 2016. V. 110. № 10. P. 2252–2265.
24. Richard W. Clarke et al. Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness // Soft Matter. 2016. V. 12. P. 7953–7958.
25. Guillaume-Gentil O. et. al. Force-controlled manipulation of single cells: from AFM to FluidFM // Trends Biotechnol. 2014. V. 32. P. 381–388.
26. Potthoff E. Rapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells // PLoS ONE. 2012. V. 7. № 12.
27. Eva Potthoff et al. Toward a Rational Design of Surface Textures Promoting Endothelialization // Nano Lett. 2014. V. 14. P. 1069–107.
28. Francois Laforge. Scanning electrochemical microscopy (SECM). Department of Chemistry and Biochemistry Queens College — City University of New York Flushing, NY 11367, USA. http://knowledge.electrochem.org/encycl/artm04-microscopy.htm
29. Comstock D. J. et al. Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy // Anal. Chem. 2010. V. 82. № 4. P. 1270–1276.
30. Wei C. et al. Current rectification at quartz nanopipet electrodes // Anal Chem. 1997. V. 69. P. 4627–4633.
31. Umehara S. et al. Current rectification with poly-l-lysine-coated quartz nanopipettes. // Nano Lett. 2006. V. 6. P. 2486–2492.
32. Bard A.J., Faulkner L.R. (eds.). Electrochemical methods: fundamentals and applications // New York: Wiley, 1980.
33. Fu Y. et al. Nanopore DNA sensors based on dendrimer-modified nanopipettes // Chem. Commun. (Camb). 2009. V. 32. P. 4877–4879.
34. Sexton L.T. et al. Resistive-pulse studies of proteins and protein/ antibody complexes using a conical nanotube sensor // J. Am. Chem. Soc. 2007. V. 129. P. 13144–13152.
35. Actis P. et al. Functionalized nanopipettes: toward labelfree, single cell biosensors // Bioanal. Rev. 2010. V. 1. № 2–4. P.177–185.
36. Sa N. et al. Rectification of Ion Current in Nanopipettes by External Substrates // ACS Nano. 2013. V. 7. № 12. P. 11272–11282.
37. Umehara S. et al. Label-free biosensing with functionalized nanopipette probes. // Proc. Natl. Acad. Sci. U. S. A. 2009. V. 106. № 12. P. 4611–4616.
38. Vitol E.A. et al. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. // ACS Nano. 2009. V. 3. № 11. P. 3529–3536.
39. Vilozny B. et al. Reversible cation response with a protein-modified nanopipette // Anal. Chem. 2011. V. 83. № 16. P. 6121–6126.
40. Vilozny B. et al. Dynamic control of nanoprecipitation in a nanopipette // ACS Nano. 2011. V. 5. № 4. P. 3191–3197.
41. Actis P. et al. Electrochemical nanoprobes for single-cell analysis // ACS Nano. 2014. V. 8. № 1. P. 875–884.
42. Zhang Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis // ACS Nano. 2016. V. 10. № 3. P. 3214–3221.
43. Takahashi Y. et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces // Angew. Chem. Int. Ed. Engl. 2011. V. 50. № 41. P. 9638–9642.
44. Iwata F. et al. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe // Nanotechnology. 2007. V. 18. P. 105301
45. Suryavanshi A.P., Yu M.F. Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires // Nanotechnology. 2007. V. 18. № 10. P. 105305.
46. Laslau C. et al. The application of nanopipettes to conducting polymer fabrication, imaging and electrochemical characterization // Prog. Polym. Sci. 2012. V. 37. № 9. P. 1177–1191.
47. Nogava et al. Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel Dept. of Micro-Nano Syst. Eng., Nagoya Univ., Nagoya, IEEE Xplore, Conference: Nanotechnology, 2007.
48. Rodolfa K.T. et al. Two-component graded deposition of biomolecules with a double-barreled nanopipette // Angew Chem. Int. Ed. Engl. 2005. V. 44. P. 6854–6859.
49. Nikolaev V.O. et al. β2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation // Science. 2010. V. 327. P. 1653–1657.
50. Bruckbauer A. et al. An addressable antibody nanoarray produced on a nanostructured surface. // J. Am. Chem. Soc. 2004. V. 126. № 21. P. 6508–6509.
51. Babakinejad B. et al. Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells // Anal. Chem. 2013. V. 85. P. 9333−9342.
52. Seger R.A. et al. Pourmand Voltage controlled nano-injection system for single-cell surgery. // Nanoscale. 2012. V. 4. № 19. P. 5843–5846.
53. Deng X.L. et al. Ion Current Oscillation in Glass Nanopipettes // J. Phys. Chem. C. 2012. V. 116. № 28. P. 14857–14862.
54. Takami T. et al. Direct observation of potassium ions in HeLa cell with ion-selective nano-pipette probe // J. Appl. Phys. 2012. V. 111 № 4. P. 044702.
55. Singhal R. et al. Multifunctional carbon-nanotube cellular endoscopes. // Nat. Nanotechnol. 2011. V. 6. № 1. P. 57–64.
56. Takami T. et al. Development of Beetle-Type Robot with SubMicropipette Probe // Jpn. J. Appl. Phys. 2012. V. 51. № 8S3. P. 08KB12.
57. Yuill E.M. et al. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm. // Anal. Chem. 2013. V. 85. № 18. P. 8498–8502.
Title in english. 2017; 12: 119-131
НАНОКАПИЛЛЯРЫ — УНИВЕРСАЛЬНЫЙ ИНСТРУМЕНТ ДЛЯ СОВРЕМЕННЫХ БИОМЕДИЦИНСКИХ ПРИЛОЖЕНИЙ
Abstract
В статье рассмотрены современные тенденции использования нанокапилляров и возможности, которые они открывают, при проведении исследований в области биологии и медицины. Нанокапилляры могут быть использованы для получения топографии живых клеток с высоким разрешением при физиологических условиях, осуществлять контролируемую доставку веществ различной природы вблизи или внутрь микро- и нанообъектов, а также для построения различных типов биосенсоров.
References
1. Takami T., Park B.H., Kawai T. Nanopipette exploring nanoworld // Nano convergence. 2014. V. 1:17.
2. The Nobel Prize in Physiology or Medicine 1991. Nobel Media AB. Retrieved, 2014.
3. Gates B.D. et. al. New approaches to nanofabrication: molding, printing, and other techniques // Chem Rev. 2005. V. 105. P. 1171–1196.
4. Levis J.L. et. al. A method for exceptionally low noise single channel recordings // Pflügers Arch. Eur. J. Physiol. 1992. V. 420. P. 618–620.
5. Zuazaga C., Steinacker A. Patch-clamp recording of ion channels: interfering effects of patch pipette glass // News Physiol. Sci. 1990. V. 65. P. 1666–1677.
6. Karhanek M. et. al. Single DNA molecule detection using nanopipettes and nanoparticles // Nano Lett. 2005. V. 5. P. 403–407.
7. Kim B.M. et. al. The fabrication of integrated carbon pipes with submicron diameters // Nanotechnology. 2005. V. 16. P. 1317–1320.
8. Freedman J.R. et. al. Magnetically assembled carbon nanotube tipped pipettes // Appl. Phys. Lett. 2007. V. 90. P. 103–108.
9. Hansma P.K. et al. The scanning ion-conductance microscope // Science. 1989. V. 243. P. 641–643.
10. Chen C.C. et al. Scanning ion conductance microscopy // Annu. Rev. Anal. Chem. (Palo Alto. Calif). 2012. V. 5. P. 207–208.
11. Gorelik J. et al. Dynamic assembly of surface structures in living cells // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 5819–5822.
12. Novak P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy // Nature Methods. 2009. V. 60. P. 279–281.
13. Ares P. et. al. High resolution atomic force microscopy of double-stranded RNA // Nanoscale. 2016. V. 8. P. 11818–11826.
14. Mikihiro Shibata et. al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin // Nature Nanotechnology. 2010. V. 5. P. 208–212.
15. Shevchuk A et. al. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy // Angew Chem. Int. Ed. Engl. 2006. V. 45. P. 2212–2226.
16. Zhang Y. et. al. High-resolution imaging and nano manipulation of biological structures on surface // Microsc. Res. Tech. 2011. V. 74. P. 614–626.
17. Daniel Sánchez et al. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure // Applied via a Pipette Biophys J. 2008. V. 95. P. 3017–3027.
18. Ushiki T. et al. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy // Micron. 2012. V. 43. № 12. P. 1390–1398.
19. Novak P. et al. Imaging Single Nanoparticle Interactions with Human Lung Cells Using Fast Ion Conductance Microscopy // Nano Lett. 2014. V. 14. № 3. P. 1202–1207.
20. Novak P. et al. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels // Neuron. 2013. V. 79 № 6. P. 1067–1077.
21. Klemic K. G. et al. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells // Biosens. Bioelectron. 2002 V. 17. P. 597–604.
22. Zhao Y. Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering // Proc. IMechE. V. 222. Part N: J. Nanoengineering and Nanosystems
23. Shevchuk A. et al. Angular Approach Scanning Ion Conductance Microscopy // Biophys. J. 2016. V. 110. № 10. P. 2252–2265.
24. Richard W. Clarke et al. Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness // Soft Matter. 2016. V. 12. P. 7953–7958.
25. Guillaume-Gentil O. et. al. Force-controlled manipulation of single cells: from AFM to FluidFM // Trends Biotechnol. 2014. V. 32. P. 381–388.
26. Potthoff E. Rapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells // PLoS ONE. 2012. V. 7. № 12.
27. Eva Potthoff et al. Toward a Rational Design of Surface Textures Promoting Endothelialization // Nano Lett. 2014. V. 14. P. 1069–107.
28. Francois Laforge. Scanning electrochemical microscopy (SECM). Department of Chemistry and Biochemistry Queens College — City University of New York Flushing, NY 11367, USA. http://knowledge.electrochem.org/encycl/artm04-microscopy.htm
29. Comstock D. J. et al. Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy // Anal. Chem. 2010. V. 82. № 4. P. 1270–1276.
30. Wei C. et al. Current rectification at quartz nanopipet electrodes // Anal Chem. 1997. V. 69. P. 4627–4633.
31. Umehara S. et al. Current rectification with poly-l-lysine-coated quartz nanopipettes. // Nano Lett. 2006. V. 6. P. 2486–2492.
32. Bard A.J., Faulkner L.R. (eds.). Electrochemical methods: fundamentals and applications // New York: Wiley, 1980.
33. Fu Y. et al. Nanopore DNA sensors based on dendrimer-modified nanopipettes // Chem. Commun. (Camb). 2009. V. 32. P. 4877–4879.
34. Sexton L.T. et al. Resistive-pulse studies of proteins and protein/ antibody complexes using a conical nanotube sensor // J. Am. Chem. Soc. 2007. V. 129. P. 13144–13152.
35. Actis P. et al. Functionalized nanopipettes: toward labelfree, single cell biosensors // Bioanal. Rev. 2010. V. 1. № 2–4. P.177–185.
36. Sa N. et al. Rectification of Ion Current in Nanopipettes by External Substrates // ACS Nano. 2013. V. 7. № 12. P. 11272–11282.
37. Umehara S. et al. Label-free biosensing with functionalized nanopipette probes. // Proc. Natl. Acad. Sci. U. S. A. 2009. V. 106. № 12. P. 4611–4616.
38. Vitol E.A. et al. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. // ACS Nano. 2009. V. 3. № 11. P. 3529–3536.
39. Vilozny B. et al. Reversible cation response with a protein-modified nanopipette // Anal. Chem. 2011. V. 83. № 16. P. 6121–6126.
40. Vilozny B. et al. Dynamic control of nanoprecipitation in a nanopipette // ACS Nano. 2011. V. 5. № 4. P. 3191–3197.
41. Actis P. et al. Electrochemical nanoprobes for single-cell analysis // ACS Nano. 2014. V. 8. № 1. P. 875–884.
42. Zhang Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis // ACS Nano. 2016. V. 10. № 3. P. 3214–3221.
43. Takahashi Y. et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces // Angew. Chem. Int. Ed. Engl. 2011. V. 50. № 41. P. 9638–9642.
44. Iwata F. et al. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe // Nanotechnology. 2007. V. 18. P. 105301
45. Suryavanshi A.P., Yu M.F. Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires // Nanotechnology. 2007. V. 18. № 10. P. 105305.
46. Laslau C. et al. The application of nanopipettes to conducting polymer fabrication, imaging and electrochemical characterization // Prog. Polym. Sci. 2012. V. 37. № 9. P. 1177–1191.
47. Nogava et al. Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel Dept. of Micro-Nano Syst. Eng., Nagoya Univ., Nagoya, IEEE Xplore, Conference: Nanotechnology, 2007.
48. Rodolfa K.T. et al. Two-component graded deposition of biomolecules with a double-barreled nanopipette // Angew Chem. Int. Ed. Engl. 2005. V. 44. P. 6854–6859.
49. Nikolaev V.O. et al. β2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation // Science. 2010. V. 327. P. 1653–1657.
50. Bruckbauer A. et al. An addressable antibody nanoarray produced on a nanostructured surface. // J. Am. Chem. Soc. 2004. V. 126. № 21. P. 6508–6509.
51. Babakinejad B. et al. Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells // Anal. Chem. 2013. V. 85. P. 9333−9342.
52. Seger R.A. et al. Pourmand Voltage controlled nano-injection system for single-cell surgery. // Nanoscale. 2012. V. 4. № 19. P. 5843–5846.
53. Deng X.L. et al. Ion Current Oscillation in Glass Nanopipettes // J. Phys. Chem. C. 2012. V. 116. № 28. P. 14857–14862.
54. Takami T. et al. Direct observation of potassium ions in HeLa cell with ion-selective nano-pipette probe // J. Appl. Phys. 2012. V. 111 № 4. P. 044702.
55. Singhal R. et al. Multifunctional carbon-nanotube cellular endoscopes. // Nat. Nanotechnol. 2011. V. 6. № 1. P. 57–64.
56. Takami T. et al. Development of Beetle-Type Robot with SubMicropipette Probe // Jpn. J. Appl. Phys. 2012. V. 51. № 8S3. P. 08KB12.
57. Yuill E.M. et al. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm. // Anal. Chem. 2013. V. 85. № 18. P. 8498–8502.
События
-
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43 -
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17