Офтальмохирургия. 2022; : 13-18
Разработка оптимальных условий криоконсервации тканеинженерных роговичных конструкций
Борзенок С. А., Костенев С. В., Дога А. В., Ли В. Г., Островский Д. С., Хубецова М. Х.
https://doi.org/10.25276/0235-4160-2022-1-13-18Аннотация
Актуальность. В последние годы в условиях дефицита донорских роговиц активно обсуждается необходимость разработки в глазных тканевых банках системы подготовки и хранения стромальных лентикул для их клинического применения в офтальмохирургии. На сегодня имеющиеся работы посвящены поиску оптимальных условий для хранения нативных лентикул. В литературе еще не встречались сообщения о хранении децеллюляризированных лентикул.
Цель. Разработать оптимальные условия криоконсервации стромальных тканеинженерных роговичных конструкций (ТК) для последующего создания криобанка.
Материал и методы. Оптические свойства нативных лентикул и ТК оценивали спектрофотометрически. Для создания ТК был использован протокол децеллюляризации с 1,5 М NaCl с ДНКазой 5 Ед/мл и РНКазой 5 Ед/ мл. Для дегидратации ТК непосредственно перед криоконсервацией был использован разрешенный к клиническому применению в офтальмологии дисперсный вискоэластик. Были сформированы три группы сравнения: 1-я – контрольная группа (нативные лентикулы), 2-я – группа без дегидратации ТК, 3-я – группа с дегидратацией ТК. Данные спектрофотометра оценивались в 2 этапа. На 1-м этапе измеряли прозрачность контрольной группы. На 2-м этапе исследовали прозрачность двух опытных групп после хранения в растворе диметилсульфоксида (DMSO) (группа без дегидратации ТК и группа с дегидратацией ТК).
Результаты. Анализ данных не выявил статистической разницы при сравнении как между группами без дегидратации ТК; с дегидратацией ТК и контролем (p≥0,05), так и при попарном сравнении групп без дегидратации ТК и групп с дегидратацией ТК (p≥0,05).
Заключение. Группы с дегидратацией ТК и без дегидратации ТК после хранения в DMSO не различались по прозрачности. В связи с этим данные группы могут рассматриваться как взаимозаменяемые по оптическим свойствам.
Список литературы
1. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3): 335–339. doi: 10.1136/bjo.2009.174284
2. Jacob S, Dhawan P, Tsatsos M, et al. Fibrin glue-assisted closure of macroperforation in predescemetic deep anterior lamellar keratoplasty with a donor obtained from small incision lenticule extraction. Cornea. 2019;38(6): 775–779. doi: 10.1097/ICO.0000000000001918
3. Angunawela RI, Riau AK, Chaurasia SS, et al. Refractive lenticule re–implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012;53(8): 4975–4985. doi: 10.1167/iovs.12-10170
4. Williams GP, Wu B, Liu YC, et al. Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non–human primate model. PLoS One. 2018;13(3): e0194209. doi: 10.1371/journal.pone.0194209
5. Zhao J, Shen Y, Tian M, et al. Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea. 2017;36(2) :222–228. doi: 10.1097/ICO.0000000000001076
6. Pradhan KR, Reinstein DZ, Carp GI, et al. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013;29(11): 777–782. doi: 10.3928/1081597X-20131021-07
7. Sun L, Yao P, Li M, et al. The Safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg. 2015;31(6): 374–379. doi: 10.3928/1081597X-20150521-03
8. Jacob S, Kumar DA, Agarwal A, et al. Preliminary evidence of successful near vision enhancement with a new technique: prEsbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017;33(4): 224–229. doi: 10.3928/1081597X-20170111-03
9. Zhao J, Shang J, Zhao Y, et al. Epikeratophakia using small-incision lenticule extraction lenticule addition combined with corneal crosslinking for keratoconus. J Cataract Refract Surg. 2019;45(8): 1191–1194. doi: 10.1016/j.jcrs.2019.03.010
10. Lazaridis A, Reinstein DZ, Archer TJ, et al. Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg. 2016;32(11): 780–786. doi: 10.3928/1081597X-20160726–01
11. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12): 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057
12. Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014;33(12): 1355–1362. doi: 10.1097/ICO.0000000000000276
13. Tripathi H, Mehdi MU, Gupta D, et al. Long-term preservation of donor corneas in glycerol for keratoplasty: exploring new protocols. Br J Ophthalmol. 2016;100(2): 284–290. doi: 10.1136/bjophthalmol-2015-306944
14. Lambert NG, Chamberlain WD. The structure and evolution of eye banking: a review on eye banks’ historical, present, and future contribution to corneal transplantation. Journal of Biorepository Science for Applied Medicine. 2017;5: 23–40. doi: 10.2147/BSAM.S114197
15. Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012;18(5): 340–348. doi: 10.1089/ten.TEC.2011.0072
16. Trias E, Gallon P, Ferrari S, et al. Banking of corneal stromal lenticules: a risk– analysis assessment with the EuroGTP II interactive tool. Cell Tissue Bank. 2020;21(2): 189–204. doi: 10.1007/s10561-020-09813-8
17. Mohamed–Noriega K, Toh KP, Poh R, et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis. 2011;17: 3437–3449. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218759/ [Accessed 11th February 2021]
18. Liu YC, Williams GP, George BL, et al. Corneal lenticule storage before reimplantation. Mol Vis. 2017;23: 753–764. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661854/ [Accessed 11th February 2021]
Fyodorov Journal of Ophthalmic Surgery. 2022; : 13-18
Development optimal conditions for cryopreservation of tissue-engineered corneal constructs
Borzenok S. A., Kostenev S. V., Doga A. V., Li V. G., Ostrovskiy D. S., Khubetsova M. K.
https://doi.org/10.25276/0235-4160-2022-1-13-18Abstract
Relevance. In recent years, due to the shortage of donor corneas, the need to creating conditions for storing stromal lenticules in eye banks for their clinical use in ophthalmosurgery have been actively discussed. Currently, scientists are looking for optimal conditions for storage native lenticules. There were no reports of storage of decellularized lenticules in the literature.
Purpose. To develop optimal conditions for cryopreservation of stromal tissue-engineered constructs for the subsequent creation of a cryobank.
Material and methods. The optical properties of native lenticules and tissue–engineered corneal constructs (TCs) were assessed using spectrophotometry. We used a decellularization protocol with 1.5 M NaCl with DNase 5 U/ml and RNase 5 U/ml to create TC. Dispersed viscoelastic agent approved for clinical use in ophthalmology was used for dehydration of TC. Three comparison groups were formed: 1st – control group (native lenticules), 2nd – group without dehydration of TC, 3rd – group with dehydration of TC. The spectrophotometer data was evaluated in 2 stages. The transparency of the control group was measured at 1 stage. At the second stage, the transparency of two experimental groups after storage in DMSO was investigated (a group without dehydration of TC and a group with dehydration of TC).
Results. When compared between groups without dehydration of TC; with dehydration of TC and the control group (p≥0.05), no statistical difference was revealed, and when comparing groups without dehydration of TC and groups with dehydration of TC (p≥0.05), no statistical difference was revealed.
Conclusion. Groups with dehydration of TC and without dehydration of TC after storage in DMSO did not differ in transparency. In this regard, these groups should be considered as interchangeable in terms of optical properties.
References
1. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3): 335–339. doi: 10.1136/bjo.2009.174284
2. Jacob S, Dhawan P, Tsatsos M, et al. Fibrin glue-assisted closure of macroperforation in predescemetic deep anterior lamellar keratoplasty with a donor obtained from small incision lenticule extraction. Cornea. 2019;38(6): 775–779. doi: 10.1097/ICO.0000000000001918
3. Angunawela RI, Riau AK, Chaurasia SS, et al. Refractive lenticule re–implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012;53(8): 4975–4985. doi: 10.1167/iovs.12-10170
4. Williams GP, Wu B, Liu YC, et al. Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non–human primate model. PLoS One. 2018;13(3): e0194209. doi: 10.1371/journal.pone.0194209
5. Zhao J, Shen Y, Tian M, et al. Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea. 2017;36(2) :222–228. doi: 10.1097/ICO.0000000000001076
6. Pradhan KR, Reinstein DZ, Carp GI, et al. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013;29(11): 777–782. doi: 10.3928/1081597X-20131021-07
7. Sun L, Yao P, Li M, et al. The Safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg. 2015;31(6): 374–379. doi: 10.3928/1081597X-20150521-03
8. Jacob S, Kumar DA, Agarwal A, et al. Preliminary evidence of successful near vision enhancement with a new technique: prEsbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017;33(4): 224–229. doi: 10.3928/1081597X-20170111-03
9. Zhao J, Shang J, Zhao Y, et al. Epikeratophakia using small-incision lenticule extraction lenticule addition combined with corneal crosslinking for keratoconus. J Cataract Refract Surg. 2019;45(8): 1191–1194. doi: 10.1016/j.jcrs.2019.03.010
10. Lazaridis A, Reinstein DZ, Archer TJ, et al. Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg. 2016;32(11): 780–786. doi: 10.3928/1081597X-20160726–01
11. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12): 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057
12. Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014;33(12): 1355–1362. doi: 10.1097/ICO.0000000000000276
13. Tripathi H, Mehdi MU, Gupta D, et al. Long-term preservation of donor corneas in glycerol for keratoplasty: exploring new protocols. Br J Ophthalmol. 2016;100(2): 284–290. doi: 10.1136/bjophthalmol-2015-306944
14. Lambert NG, Chamberlain WD. The structure and evolution of eye banking: a review on eye banks’ historical, present, and future contribution to corneal transplantation. Journal of Biorepository Science for Applied Medicine. 2017;5: 23–40. doi: 10.2147/BSAM.S114197
15. Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012;18(5): 340–348. doi: 10.1089/ten.TEC.2011.0072
16. Trias E, Gallon P, Ferrari S, et al. Banking of corneal stromal lenticules: a risk– analysis assessment with the EuroGTP II interactive tool. Cell Tissue Bank. 2020;21(2): 189–204. doi: 10.1007/s10561-020-09813-8
17. Mohamed–Noriega K, Toh KP, Poh R, et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis. 2011;17: 3437–3449. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218759/ [Accessed 11th February 2021]
18. Liu YC, Williams GP, George BL, et al. Corneal lenticule storage before reimplantation. Mol Vis. 2017;23: 753–764. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661854/ [Accessed 11th February 2021]
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38