Журналов:     Статей:        

Офтальмохирургия. 2021; : 6-11

Критерии надежности измерений оптической когерентной томографии у пациентов с возрастной катарактой

Шпак А. А., Трошина А. А.

https://doi.org/10.25276/0235-4160-2021-4-6-11

Аннотация

Цель. Определить оптимальные критерии надежности результатов измерений количественных показателей оптической когерентной томографии (ОКТ) у пациентов с возрастной катарактой. Материал и методы. Обследовано 83 пациента (83 глаза) с возрастной катарактой до и после факоэмульсификации с имплантацией интраокулярной линзы. Выраженность помутнения хрусталика оценивали по силе сигнала ОКТ, определяемой самим прибором (Cirrus HD-OCT), и на основе денситометрического анализа Шаймпфлюгизображений, а также биомикроскопически по классификации ВОЗ. Дооперационное измерение считали надежным, если отличие от послеоперационного измерения не превышало 5 мкм для средней толщины перипапиллярного слоя нервных волокон сетчатки (пСНВС) и 8 мкм для толщины сетчатки в фовеальной зоне. Результаты. По данным ROC-анализа только показатель силы ОКТ-сигнала позволял отличить надежные измерения ОКТ: для толщины пСНВС величина площади под ROC-кривой (AUC) силы ОКТ-сигнала составила 0,815 (95% доверительный интервал (ДИ) 0,720–0,909), для толщины сетчатки в фовеальной зоне – 0,756 (95% ДИ 0,632–0,880). Наилучшее пороговое значение силы сигнала, позволяющее получать надежные данные, составило 5,5 для пСНВС и 4,5 для толщины сетчатки в фовеальной зоне (учитывая, что сила сигнала измеряется в целых числах, указанные величины следует округлить до 6 и 5 соответственно). Остальные изученные параметры имели AUC не более 0,6, что не позволяет использовать их для оценки данных ОКТ. Заключение. У пациентов с возрастной катарактой критериями надежности измерений структур глазного дна методом ОКТ могут служить только собственные данные прибора (сила ОКТ-сигнала). Наименьшее значение силы сигнала, позволяющее получать надежные данные на приборе Cirrus HD-OCT, составляет 6 для пСНВС и 5 для толщины сетчатки в фовеальной зоне.

Список литературы

1. El-Ashry M, Appaswamy S, Deokule S, Pagliarini S. The effect of phacoemulsification cataract surgery on the measurement of retinal nerve fiber layer thickness using optical coherence tomography. Curr Eye Res. 2006;31(5): 409–413. doi: 10.1080/02713680600646882

2. Kim NR, Lee H, Lee ES, Kim JH, Hong S, Seong GJ, Kim CY. Influence of cataract on time domain and spectral domain optical coherence tomography retinal nerve fiber layer measurements. J Glaucoma. 2012;21(2): 116–122. doi: 10.1097/IJG.0b013e31820277da

3. Kok PH, van den Berg TJP, van Dijk HW, Stehouewer M, van der Meulen IJE, Mourits MP, Verbraak FD. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol. 2013;91(5): 418–424. doi: 10.1111/j.17553768.2012.02514.x

4. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Effect of cataract and its removal on ganglion cell complex thickness and peripapillary retinal nerve fiber layer thickness measurements by fourier-domain optical coherence tomography. J Glaucoma. 2013;22(6): 447–455. doi: 10.1097/IJG.0b013e3182894a16

5. Lee DW, Kim JM, Park KH, Choi CY, Cho JG. Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography. J Ophthalmic Vis Res. 2010;5(3): 151–157.

6. Шпак А.А. Оптическая когерентная томография: проблемы и решения. М.: Издательство «Офтальмология»; 2019.

7. Шпак А.А., Огородникова С.Н. Ошибки классической и спектральной оптической когерентной томографии при измерении слоя нервных волокон сетчатки у здоровых лиц. Вестник офтальмологии. 2010;126(5): 19–21.

8. Шпак А.А., Малаханова М.К., Огородникова С.Н. Оценка стереометрических параметров диска зрительного нерва и слоя нервных волокон сетчатки на приборе HRT III. Сообщение 3: Сравнение ошибки методов Гейдельбергской ретинотомографии и спектральной оптической когерентной томографии. Вестник офтальмологии. 2011;127(2): 46–49.

9. Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN. Comparison of measurement error of Cirrus HD-OCT and Heidelberg Retina Tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol. 2012;250(2): 271–277. doi: 10.1007/s00417-011-1808-4

10. Hanumunthadu D, Wang JP, Chen W, Wong EN, Chen Y, Morgan WH, Patel PJ, Chen FK. Impact of retinal pigment epithelium pathology on spectral-domain optical coherence tomography-derived macular thickness and volume metrics and their intersession repeatability. Clin Exp Ophthalmol. 2017;45(3): 270–279. doi: 10.1111/ceo.12868

11. Thylefors B, Chylack LT, Konyama K, Sasaki K, Sperduto R, Taylor HR, West S, WHO Cataract Grading Group. A simplified cataract grading system. Ophthalmic Epidemiol. 2002;9(2): 83–95. doi: 10.1076/opep.9.2.83.1523

12. Huang Y, Gangaputra S, Lee KE, Narkar AR, Klein R, Klein BE, Meuer SM, Danis RP. Signal quality assessment of retinal optical coherence tomography images. Invest Ophthalmol Vis Sci. 2012;53(4): 2133–2141. doi: 10.1167/iovs.11-8755

13. Mwanza J, Bhorade A, Sekhon N et al. Effect of cataract and its removal on signal strength and peripapillary retinal nerve fiber layer optical coherence tomography measurements. J Glaucoma. 2011;20(1): 37–43. doi: 10.1097/IJG.0b013e3181ccb93b

14. Lee R, Tham YC, Cheung CY, Sidhartha E, Siantar RG, Lim SH, Wong TY, Cheng CY. Factors affecting signal strength in spectral-domain optical coherence tomography. Acta Ophthalmol. 2018;96(1): e54–e58. doi: 10.1111/aos.13443

15. Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma. 2006;15(4): 336– 340. doi: 10.1097/01.ijg.0000212244.64584.c2

16. Sanchez-Cano A, Pablo LE, Larrosa JM, Polo V. The effect of phacoemulsification cataract surgery on polarimetry and tomography measurements for glaucoma diagnosis. J Glaucoma. 2010;19(7): 468–474. doi: 10.1097/IJG.0b013e3181c4aed8

17. Mauschitz M, Roth F, Holz F, Breteler MMB, Finger RP. The impact of lens opacity on SD-OCT retinal nerve fiber layer and Bruch’s membrane opening measurements using the anatomical positioning system (APS). Invest Ophthalmol Vis Sci. 2017;58(5): 2804–2809. doi: 10.1167/iovs.17-21675

18. Bambo M, Garcia-Martin E, Otin S, Sancho E, Fuertes I, Herrero R, Satue M, Pablo L. Influence of cataract surgery on repeatability and measurements of spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(1): 52–58. doi: 10.1136/ bjophthalmol-2013-303752

19. Garcia-Martin E, Fernandez J, Gil-Arribas L, Polo V, Larrosa JM, Otin S, Fuertes I, Pablo L. Effect of cataract surgery on optical coherence tomography measurements and repeatability in patients with non-insulin-dependent diabetes mellitus. Invest Ophthalmol Vis Sci. 2013;54(8): 5303–5312. doi: 10.1167/iovs.13-12390

20. Шпак А.А., Коробкова М.В., Трошина А.А. Влияние интраокулярной коррекции на показатели оптической когерентной томографии при миопии. Вестник офтальмологии. 2019;135(4): 3–9. doi: 10.17116/oftalma20191350413

21. Makhotkina NY, Berendschot TJM, van den Biggelaar FJM, Weik ARH, Nuijts RMMA. Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol. 2018;96(4): 356–363. doi: 10.1111/aos.13694

22. Lim DH, Kim TH, Chung ES, Chung TY. Measurement of lens density using Scheimpflug imaging system as a screening test in the field of health examination for age-related cataract. Br J Ophthalmol. 2015;99(2): 184–191. doi: 10.1136/ bjophthalmol-2014-305632

23. Kim M, Eom Y, Song JS, Kim HM. Effect of cataract grade according to widefield fundus images on measurement of macular thickness in cataract patients. Korean J Ophthalmol. 2018; 32(3): 172–181. doi: 10.3341/kjo.2017.0067

24. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY. The Lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111(6): 831–836. doi: 10.1001/archopht.1993.01090060119035

25. van Velthoven ME, van der Linden MH, de Smet MD, Faber DJ, Verbraak FD. Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol. 2006;90(10): 1259–1562. doi: 10.1136/bjo.2004.097022

26. Gonzalez-Ocampo-Dorta S, Garcia-Medina JJ, Feliciano-Sanchez A, Scalerandi G. Effect of posterior capsular opacification removal on macular optical coherence tomography. Eur J Ophthalmol. 2008;18(3): 435–441. doi: 10.1177/112067210801800319

Fyodorov Journal of Ophthalmic Surgery. 2021; : 6-11

Criteria for the reliability of optical coherence tomography measurements in patients with age-related cataract

Shpak A. A., Troshina A. A.

https://doi.org/10.25276/0235-4160-2021-4-6-11

Abstract

Purpose. To determine optimal criteria for reliable optical coherence tomography (OCT) measurements in patients with age-related cataract. Material and methods. We examined 83 patients (83 eyes) with age-related cataract before and after cataract surgery. The intensity of lens opacity was assessed by the Cirrus HD-OCT signal strength and Pentacam-based Scheimpflug images analysis. Clinical cataract grading was performed according to the WHO classification. Preoperative measurement was considered reliable if its’ difference with postoperative measurement did not exceed 5 µm for the peripapillary retinal nerve fiber layer thickness (pRNFL) and 8 µm for the central subfield thickness. Results. According to the ROC analysis, only the OCT signal strength allows to distinguish reliable OCT measurements: area under the ROC-curve (AUC) of the OCT signal strength was 0.815 (95% confidence interval 0.720–0.909) for the pRNFL and 0.756 (95% CI: 0.632–0.880) for the central subfield thickness. The best signal strength thresholds for reliable data were 5.5 for pRNFL and 4.5 for the central macular thickness (considering that the signal strength is measured in integers, these values should be rounded to 6 and 5 respectively). The rest of the studied parameters had AUC less than 0.6 so they cannot be used for evaluating OCT data. Conclusion. In patients with age-related cataract, only OCT signal strength can determine reliability of the OCT measurements. The lowest signal strength for reliable data on the Cirrus HD-OCT is 6 for pRNFL and 5 for central subfield thickness.

References

1. El-Ashry M, Appaswamy S, Deokule S, Pagliarini S. The effect of phacoemulsification cataract surgery on the measurement of retinal nerve fiber layer thickness using optical coherence tomography. Curr Eye Res. 2006;31(5): 409–413. doi: 10.1080/02713680600646882

2. Kim NR, Lee H, Lee ES, Kim JH, Hong S, Seong GJ, Kim CY. Influence of cataract on time domain and spectral domain optical coherence tomography retinal nerve fiber layer measurements. J Glaucoma. 2012;21(2): 116–122. doi: 10.1097/IJG.0b013e31820277da

3. Kok PH, van den Berg TJP, van Dijk HW, Stehouewer M, van der Meulen IJE, Mourits MP, Verbraak FD. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol. 2013;91(5): 418–424. doi: 10.1111/j.17553768.2012.02514.x

4. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Effect of cataract and its removal on ganglion cell complex thickness and peripapillary retinal nerve fiber layer thickness measurements by fourier-domain optical coherence tomography. J Glaucoma. 2013;22(6): 447–455. doi: 10.1097/IJG.0b013e3182894a16

5. Lee DW, Kim JM, Park KH, Choi CY, Cho JG. Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography. J Ophthalmic Vis Res. 2010;5(3): 151–157.

6. Shpak A.A. Opticheskaya kogerentnaya tomografiya: problemy i resheniya. M.: Izdatel'stvo «Oftal'mologiya»; 2019.

7. Shpak A.A., Ogorodnikova S.N. Oshibki klassicheskoi i spektral'noi opticheskoi kogerentnoi tomografii pri izmerenii sloya nervnykh volokon setchatki u zdorovykh lits. Vestnik oftal'mologii. 2010;126(5): 19–21.

8. Shpak A.A., Malakhanova M.K., Ogorodnikova S.N. Otsenka stereometricheskikh parametrov diska zritel'nogo nerva i sloya nervnykh volokon setchatki na pribore HRT III. Soobshchenie 3: Sravnenie oshibki metodov Geidel'bergskoi retinotomografii i spektral'noi opticheskoi kogerentnoi tomografii. Vestnik oftal'mologii. 2011;127(2): 46–49.

9. Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN. Comparison of measurement error of Cirrus HD-OCT and Heidelberg Retina Tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol. 2012;250(2): 271–277. doi: 10.1007/s00417-011-1808-4

10. Hanumunthadu D, Wang JP, Chen W, Wong EN, Chen Y, Morgan WH, Patel PJ, Chen FK. Impact of retinal pigment epithelium pathology on spectral-domain optical coherence tomography-derived macular thickness and volume metrics and their intersession repeatability. Clin Exp Ophthalmol. 2017;45(3): 270–279. doi: 10.1111/ceo.12868

11. Thylefors B, Chylack LT, Konyama K, Sasaki K, Sperduto R, Taylor HR, West S, WHO Cataract Grading Group. A simplified cataract grading system. Ophthalmic Epidemiol. 2002;9(2): 83–95. doi: 10.1076/opep.9.2.83.1523

12. Huang Y, Gangaputra S, Lee KE, Narkar AR, Klein R, Klein BE, Meuer SM, Danis RP. Signal quality assessment of retinal optical coherence tomography images. Invest Ophthalmol Vis Sci. 2012;53(4): 2133–2141. doi: 10.1167/iovs.11-8755

13. Mwanza J, Bhorade A, Sekhon N et al. Effect of cataract and its removal on signal strength and peripapillary retinal nerve fiber layer optical coherence tomography measurements. J Glaucoma. 2011;20(1): 37–43. doi: 10.1097/IJG.0b013e3181ccb93b

14. Lee R, Tham YC, Cheung CY, Sidhartha E, Siantar RG, Lim SH, Wong TY, Cheng CY. Factors affecting signal strength in spectral-domain optical coherence tomography. Acta Ophthalmol. 2018;96(1): e54–e58. doi: 10.1111/aos.13443

15. Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma. 2006;15(4): 336– 340. doi: 10.1097/01.ijg.0000212244.64584.c2

16. Sanchez-Cano A, Pablo LE, Larrosa JM, Polo V. The effect of phacoemulsification cataract surgery on polarimetry and tomography measurements for glaucoma diagnosis. J Glaucoma. 2010;19(7): 468–474. doi: 10.1097/IJG.0b013e3181c4aed8

17. Mauschitz M, Roth F, Holz F, Breteler MMB, Finger RP. The impact of lens opacity on SD-OCT retinal nerve fiber layer and Bruch’s membrane opening measurements using the anatomical positioning system (APS). Invest Ophthalmol Vis Sci. 2017;58(5): 2804–2809. doi: 10.1167/iovs.17-21675

18. Bambo M, Garcia-Martin E, Otin S, Sancho E, Fuertes I, Herrero R, Satue M, Pablo L. Influence of cataract surgery on repeatability and measurements of spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(1): 52–58. doi: 10.1136/ bjophthalmol-2013-303752

19. Garcia-Martin E, Fernandez J, Gil-Arribas L, Polo V, Larrosa JM, Otin S, Fuertes I, Pablo L. Effect of cataract surgery on optical coherence tomography measurements and repeatability in patients with non-insulin-dependent diabetes mellitus. Invest Ophthalmol Vis Sci. 2013;54(8): 5303–5312. doi: 10.1167/iovs.13-12390

20. Shpak A.A., Korobkova M.V., Troshina A.A. Vliyanie intraokulyarnoi korrektsii na pokazateli opticheskoi kogerentnoi tomografii pri miopii. Vestnik oftal'mologii. 2019;135(4): 3–9. doi: 10.17116/oftalma20191350413

21. Makhotkina NY, Berendschot TJM, van den Biggelaar FJM, Weik ARH, Nuijts RMMA. Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol. 2018;96(4): 356–363. doi: 10.1111/aos.13694

22. Lim DH, Kim TH, Chung ES, Chung TY. Measurement of lens density using Scheimpflug imaging system as a screening test in the field of health examination for age-related cataract. Br J Ophthalmol. 2015;99(2): 184–191. doi: 10.1136/ bjophthalmol-2014-305632

23. Kim M, Eom Y, Song JS, Kim HM. Effect of cataract grade according to widefield fundus images on measurement of macular thickness in cataract patients. Korean J Ophthalmol. 2018; 32(3): 172–181. doi: 10.3341/kjo.2017.0067

24. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY. The Lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111(6): 831–836. doi: 10.1001/archopht.1993.01090060119035

25. van Velthoven ME, van der Linden MH, de Smet MD, Faber DJ, Verbraak FD. Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol. 2006;90(10): 1259–1562. doi: 10.1136/bjo.2004.097022

26. Gonzalez-Ocampo-Dorta S, Garcia-Medina JJ, Feliciano-Sanchez A, Scalerandi G. Effect of posterior capsular opacification removal on macular optical coherence tomography. Eur J Ophthalmol. 2008;18(3): 435–441. doi: 10.1177/112067210801800319