Журналов:     Статей:        

Офтальмохирургия. 2021; : 48-54

Иммуногистохимическая идентификация лимфатического оттока в фильтрационных подушках после непроникающей глубокой склерэктомии (НГСЭ)

Юрьева Т. Н., Малышева Ю. В., Клименков И. В., Судаков Н. П.

https://doi.org/10.25276/0235-4160-2021-3-48-54

Аннотация

Актуальность. Одним из условий формирования функциональных путей оттока после антиглаукомных операций фильтрующего типа является равномерная абсорбция влаги из фильтрационных подушек, которую обеспечивают кровеносные и, возможно, лимфатические сосуды конъюнктивы. Цель. Провести структурную и молекулярную оценку фильтрационных подушек у пациентов с открытоугольной глаукомой (ОУГ) после непроникающей глубокой склерэктомии (НГСЭ) по данным ОКТ, а также ультраструктурного и иммуногистохимического исследования. Материал и методы. Проведено клиническое исследование 12 пациентов с первичной открытоугольной глаукомой (ПОУГ), прооперированных методом НГСЭ. В отдаленном послеоперационном периоде (12–18 мес яцев) определяли уровень внутриглазного давления (ВГД), оценивали структуру фильтрационных подушек с помощью биомикроскопии и ОКТ переднего отрезка глаза, проводили иммуногистохимическое исследование ткани фильтрационных подушек на экспрессию подопланина и ультраструктурный анализ полученных образцов на лазерном конфокальном микроскопе LSM 710 (Zeiss). В 8 случаях (1-я группа ) это были нефункциональные рубцовые подушки, ВГД 24,12±2,24 мм рт.ст., в 4 случаях (2-я группа) – функциональные фильтрационные подушки, ВГД 15,31± 4,08 мм рт.ст. Результаты. При иммуногистохимическом исследовании образцов конъюнктивы пациентов 1-й группы ни в одном случае не было выявлено сосудов, имеющих характеристики лимфатической системы. В каждом образце фильтрационных подушек пациентов 2-й группы определялось от 5 до 7 сосудов с различными вариантами экспрессии подопланина. Заключение. Отток влаги, поступающей в субконъюнктивальное пространство через вновь созданный путь оттока при хирургии глаукомы, осуществляется за счет конъюнктивальных лимфатических структур, состояние которых в определенной степени определяет успех или неуспех операции.

Список литературы

1. Huang AS, Weinreb RN. Structure and Mechanism of Uveoscleral Outflow. In: Francis BA, Sarkisian SR, Tan JC (Eds.) Minimally Invasive Glaucoma Surgery. Thieme: New York; 2017: 25–33.

2. Johnson M. ‘What controls aqueous humour outflow resistance?’ Exp Eye Res. 2006;82(4): 545–557.

3. Агафонова В.В., Баринов Э.Ф., Франковска-Герлак М.З., Сулаева О.Н., Соколовская Т.В., Керимова Р.С., Халудорова Н.Б., Брижак П.Е. Гидродинамика глаза – структурные детерминанты и молекулярные механизмы (часть 1). Глаукома. Журнал НИИ ГБ РАМН. 2012;3: 17–21.

4. Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of aqueous humour outflow: a review. Clin Exp Ophthalmol. 2018;46(2): 158–168.

5. Соколовская Т.В., Тимошкина Н.Т., Ерескин Н.Н., Иванова Е.С. Непроникающая микрохирургия первичной открытоугольной глаукомы. РМЖ. Клиническая офтальмология. 2003;4(2): 84–86.

6. Gedde SJ, Chen PP, Heuer DK, Singh K, Wright MM, Feuer WJ, Schiffman JC, Shi W. The Primary Tube Versus Trabeculectomy Study: Methodology of a Multicenter Randomized Clinical Trial Comparing Tube Shunt Surgery and Trabeculectomy with Mitomycin C. Ophthalmology. 2018;125(5): 774–781.

7. Palanca-Capistrano AM, Hall J, Cantor LB, Morgan L, Hoop J, WuDunn D. Longterm outcomes of intraoperative 5-fluorouracil versus intraoperative mitomycin C in primary trabeculectomy surgery. Ophthalmology. 2009;116(2): 185–190.

8. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003; 48(3): 314–346.

9. Addicks EM, Quigley HA, Green WR, Robin AL. Histologic Characteristics of Filtering Blebs in Glaucomatous Eyes. Arch Ophthalmol. 1983;101(5): 795–798.

10. Huang AS, Saraswathy S, Dastiridou A, Begian A, Mohindroo C, Tan JC, Francis BA, Hinton DR, Weinreb RN. Aqueous Angiography-Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes. Invest Ophthalmol Vis Sci. 2016;57(11): 4558–4565.

11. Сергиенко В.И., Бондарева И.Б. Математическая статистика в клинических исследованиях. – М.: Издательство «ГЕОТАР Медицина»; 2001.

12. Green W, Lind JT, Sheybani A. Review of the Xen Gel Stent and InnFocus MicroShunt. Curr Opin Ophthalmol. 2018;29(2): 162–170.

13. Lenzhofer M, Strohmaier C, Hohensinn M, Hitzl W, Sperl P, Gerner M, Steiner V, Moussa S, Krall E, Reitsamer HA. Longitudinal bleb morphology in anterior segment OCT after minimally invasive transscleral ab interno Glaucoma Gel Microstent implantation. Acta Ophthalmol. 2019;97(2): e231–e237.

14. Guo W, Zhu Y, Yu PK, Yu X, Sun X, Cringle SJ, Su E-N, Yu D-Y. Quantitative study of the topographic distribution of conjunctival lymphatic vessels in the monkey. Exp Eye Res. 2012;94(1): 90–97.

15. Freitas-Neto CA, Costa RA, Kombo N, Freitas T, Orefice JL, Orefice F, Foster CS. Subconjunctival indocyanine green identifies lymphatic vessels. JAMA Ophthalmol. 2015;133(1): 102–104.

16. Gruntzig J, Hollmann F. Lymphatic vessels of the eye – old questions – new insights. Ann Anat. 2019;221: 1–16.

17. Yu D-Y, Morgan WH, Sun X, Su EN, Cringle SJ, Yu PK, House P, Guo W, Yu X. The critical role of the conjunctiva in glaucoma filtration surgery. Prog Retin Eye Res. 2009; 28(5): 303–328.

18. Khoo YJ, Abdullah AAH, Yu D-Y, Morgan WH. Use of trypan blue to assess lymphatic function following trabeculectomy. Clin Exp Ophthalmol. 2019;47(7): 892–897.

19. Akiyamaa G, Saraswathya S, Bogarina Th, Panc X, Barrona E, Wongd TT, Kanekoe MK, Katoe Y, Hongg Y, Huanga AS. Functional, Structural, and Molecular Identification of Lymphatic Outflow from Subconjunctival Blebs. Exp Eye Res. 2020; 196: 108049.

20. Bouhenni RA, Al Jadaan I, Rassavong H, Al Shahwan S, Al Katan H, Dunmire J, Krasniqi M, Edward DP. Lymphatic and Blood Vessel Density in Human Conjunctiva After Glaucoma Filtration Surgery. J Glaucoma. 2016; 25(1): e35–38.

21. Singh D, Shankar R, Singh J, Singh K. The Conjunctival Lymphatic System. Annals of Ophthalmology. 2003; 35(2): 99-104.

22. Benedikt O. [Demonstration of aqueous outflow patterns of normal and glaucomatous human eyes through the injection of fluorescein solution in the anterior chamber (author’s transl)]. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976; 199(1): 45–67.

23. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Kröber SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. 2006;12(2): 230–234.

24. Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Heindl LM, Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci. 2014;55(10): 6440–6442.

25. Joukov V, Kumar V, Sorsa T, Arighi E, Weich H, Saksela O, Alitalo K. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem. 1998;273(12): 6599–6602.

26. Schroedl F, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, Lutty GA, Maruyama K, Chen L, Lutjen-Drecoll E, Dana R, Choi I, Lee S, Kyoung Chung H, Suk Lee Y, Eui Kim K, Choi D, Park EK, Yang D, Ecoiffier T, Monahan J, Chen W, Aguilar B, Lee HN, Yoo J, Koh CJ, Chen L, Wong AK, Hong Y-K. 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation. 2012;125(7): 872–882.

27. Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4): 607–618.

Fyodorov Journal of Ophthalmic Surgery. 2021; : 48-54

Immunohistochemical identification of lymphatic outflow in filtering blebs after non-penetrating deep sclerectomy (NPDS)

Yurieva T. N., Malysheva Ju. V., Klimenkov I. V., Sudakov N. P.

https://doi.org/10.25276/0235-4160-2021-3-48-54

Abstract

Relevance. One of the conditions for the functional outflow pathways’formation after filtering glaucoma surgeries is the uniform moisture absorption from the filtering blebs, which is provided by the blood and, possibly, lymphatic vessels of the conjunctiva. Purpose. To conduct a structural and molecular assessment of filtering blebs in patients with open-angle glaucoma (OAG) after non-penetrating deep sclerectomy (NPDS) according to OCT data, as well as ultrastructural and immunohistochemical studies. Material and methods. A clinical study of 12 patients with primary open-angle glaucoma (POAG) after NPDS was conducted. In the long-term postoperative period (12–18 months), the level of intraocular pressure (IOP) was determined, the structure of the filtering blebs using biomicroscopy and OCT of the anterior segment of the eye was evaluated, the immunohistochemical study of the filtering blebs’ tissue for the expression of podoplanin and ultrastructural analysis of the samples obtained using a laser confocal microscope LSM 710 (Zeiss) was performed. In 8 cases (group 1), these were non-functional scarred filtering blebs, IOP 24.12±2.24 mm Hg, in 4 cases (group 2) – functional filtering blebs, IOP 15.31±4.08 mm Hg. Results. During the immunohistochemical examination of the first group patients’ conjunctival samples, no vessels with characteristics of the lymphatic system were detected in any case. In each sample of the second group patients’ filtering blebs, from 5 to 7 vessels with different variants of podoplanin expression were determined. Conclusion. The aqueous outflow entering the subconjunctival space through the newly created outflow pathway during glaucoma surgery is carried out at the expense of conjunctival lymphatic structures, the condition of which to a certain extent determines the success or failure of the surgery.

References

1. Huang AS, Weinreb RN. Structure and Mechanism of Uveoscleral Outflow. In: Francis BA, Sarkisian SR, Tan JC (Eds.) Minimally Invasive Glaucoma Surgery. Thieme: New York; 2017: 25–33.

2. Johnson M. ‘What controls aqueous humour outflow resistance?’ Exp Eye Res. 2006;82(4): 545–557.

3. Agafonova V.V., Barinov E.F., Frankovska-Gerlak M.Z., Sulaeva O.N., Sokolovskaya T.V., Kerimova R.S., Khaludorova N.B., Brizhak P.E. Gidrodinamika glaza – strukturnye determinanty i molekulyarnye mekhanizmy (chast' 1). Glaukoma. Zhurnal NII GB RAMN. 2012;3: 17–21.

4. Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of aqueous humour outflow: a review. Clin Exp Ophthalmol. 2018;46(2): 158–168.

5. Sokolovskaya T.V., Timoshkina N.T., Ereskin N.N., Ivanova E.S. Nepronikayushchaya mikrokhirurgiya pervichnoi otkrytougol'noi glaukomy. RMZh. Klinicheskaya oftal'mologiya. 2003;4(2): 84–86.

6. Gedde SJ, Chen PP, Heuer DK, Singh K, Wright MM, Feuer WJ, Schiffman JC, Shi W. The Primary Tube Versus Trabeculectomy Study: Methodology of a Multicenter Randomized Clinical Trial Comparing Tube Shunt Surgery and Trabeculectomy with Mitomycin C. Ophthalmology. 2018;125(5): 774–781.

7. Palanca-Capistrano AM, Hall J, Cantor LB, Morgan L, Hoop J, WuDunn D. Longterm outcomes of intraoperative 5-fluorouracil versus intraoperative mitomycin C in primary trabeculectomy surgery. Ophthalmology. 2009;116(2): 185–190.

8. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003; 48(3): 314–346.

9. Addicks EM, Quigley HA, Green WR, Robin AL. Histologic Characteristics of Filtering Blebs in Glaucomatous Eyes. Arch Ophthalmol. 1983;101(5): 795–798.

10. Huang AS, Saraswathy S, Dastiridou A, Begian A, Mohindroo C, Tan JC, Francis BA, Hinton DR, Weinreb RN. Aqueous Angiography-Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes. Invest Ophthalmol Vis Sci. 2016;57(11): 4558–4565.

11. Sergienko V.I., Bondareva I.B. Matematicheskaya statistika v klinicheskikh issledovaniyakh. – M.: Izdatel'stvo «GEOTAR Meditsina»; 2001.

12. Green W, Lind JT, Sheybani A. Review of the Xen Gel Stent and InnFocus MicroShunt. Curr Opin Ophthalmol. 2018;29(2): 162–170.

13. Lenzhofer M, Strohmaier C, Hohensinn M, Hitzl W, Sperl P, Gerner M, Steiner V, Moussa S, Krall E, Reitsamer HA. Longitudinal bleb morphology in anterior segment OCT after minimally invasive transscleral ab interno Glaucoma Gel Microstent implantation. Acta Ophthalmol. 2019;97(2): e231–e237.

14. Guo W, Zhu Y, Yu PK, Yu X, Sun X, Cringle SJ, Su E-N, Yu D-Y. Quantitative study of the topographic distribution of conjunctival lymphatic vessels in the monkey. Exp Eye Res. 2012;94(1): 90–97.

15. Freitas-Neto CA, Costa RA, Kombo N, Freitas T, Orefice JL, Orefice F, Foster CS. Subconjunctival indocyanine green identifies lymphatic vessels. JAMA Ophthalmol. 2015;133(1): 102–104.

16. Gruntzig J, Hollmann F. Lymphatic vessels of the eye – old questions – new insights. Ann Anat. 2019;221: 1–16.

17. Yu D-Y, Morgan WH, Sun X, Su EN, Cringle SJ, Yu PK, House P, Guo W, Yu X. The critical role of the conjunctiva in glaucoma filtration surgery. Prog Retin Eye Res. 2009; 28(5): 303–328.

18. Khoo YJ, Abdullah AAH, Yu D-Y, Morgan WH. Use of trypan blue to assess lymphatic function following trabeculectomy. Clin Exp Ophthalmol. 2019;47(7): 892–897.

19. Akiyamaa G, Saraswathya S, Bogarina Th, Panc X, Barrona E, Wongd TT, Kanekoe MK, Katoe Y, Hongg Y, Huanga AS. Functional, Structural, and Molecular Identification of Lymphatic Outflow from Subconjunctival Blebs. Exp Eye Res. 2020; 196: 108049.

20. Bouhenni RA, Al Jadaan I, Rassavong H, Al Shahwan S, Al Katan H, Dunmire J, Krasniqi M, Edward DP. Lymphatic and Blood Vessel Density in Human Conjunctiva After Glaucoma Filtration Surgery. J Glaucoma. 2016; 25(1): e35–38.

21. Singh D, Shankar R, Singh J, Singh K. The Conjunctival Lymphatic System. Annals of Ophthalmology. 2003; 35(2): 99-104.

22. Benedikt O. [Demonstration of aqueous outflow patterns of normal and glaucomatous human eyes through the injection of fluorescein solution in the anterior chamber (author’s transl)]. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976; 199(1): 45–67.

23. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Kröber SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. 2006;12(2): 230–234.

24. Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Heindl LM, Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci. 2014;55(10): 6440–6442.

25. Joukov V, Kumar V, Sorsa T, Arighi E, Weich H, Saksela O, Alitalo K. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem. 1998;273(12): 6599–6602.

26. Schroedl F, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, Lutty GA, Maruyama K, Chen L, Lutjen-Drecoll E, Dana R, Choi I, Lee S, Kyoung Chung H, Suk Lee Y, Eui Kim K, Choi D, Park EK, Yang D, Ecoiffier T, Monahan J, Chen W, Aguilar B, Lee HN, Yoo J, Koh CJ, Chen L, Wong AK, Hong Y-K. 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation. 2012;125(7): 872–882.

27. Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4): 607–618.