Журналов:     Статей:        

Офтальмохирургия. 2020; : 18-25

Сравнительный анализ коррекции миопического астигматизма по технологии SMILE с учетом и без учета циклоторсии

Мушкова И. А., Костенев С. В., Соболев Н. П., Гамидов Г. А.

https://doi.org/10.25276/0235-4160-2020-1-18-25

Аннотация

Цель. Разработать альтернативный способ контроля циклоторсии для повышения клинико-функциональных результатов коррекции миопического астигматизма по технологии SMILE.

Материал и методы. Были сформированы 2 группы: без учета (I группа) и с учетом (II группа) циклоторсии, по 30 чел. (30 глаз) в каждой. В обеих группах определялась циклоторсия для получения равнозначных выборок. Непосредственно перед операцией пациенту размечали роговицу за щелевой лампой. Для получения числовых данных циклоторсии был разработан роговичный транспортир со шкалой точностью в 1 градус. Роговичный транспортир прикладывали к глазу, сопоставляя шкалу 0 градусов и горизонтальное сечение в окуляре микроскопа. Наблюдаемое отклонение роговичной метки от горизонтального сечения указывало на величину циклоторсии. Через 3 мес. после операции всем пациентам определяли НКОЗ, МКОЗ, объективную рефракцию, рассчитывали индексы эффективности и безопасности.

Результаты. Среднее и стандартное отклонение циклоторсии I и II группы составило 6,16±1,31и 7,10±1,37 градусов соответственно (p<0,05). Через 3 мес. после операции в I и II группах отмечалась прибавка 1 и более строк МКОЗ в 20 и 7% соответственно. Через 3 мес. после операции индекс эффективности оказался выше во II группе при сопоставимом индексе безопасности. Предсказуемость цилиндрического компонента рефракции в пределах ±0,5 дптр относительно целевой рефракции (эмметропия) в I и II группах составила 40 и 100% соответственно (p<0,05).

Выводы. 1. Предложенный способ компенсации циклоторсии позволяет безопасно повысить предсказуемость лазерной коррекции миопического астигматизма по технологии SMILE и является доступным, так как не требует дорогостоящего оборудования. 2. Данный способ рекомендован для определения циклоторсии при степени миопического астигматизма от -0,75 дптр и для корректировки оси астигматизма при выявлении циклоторсии более ±5 градусов.

Список литературы

1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5): 1036–42. doi:10.1016/j. ophtha.2016.01.006.

2. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. Cur. Ophthalmol. 2018;30(1): 3–22. doi:10.1016/j.joco.2017.08.009.

3. Костенев С.В., Черных В.В. Фемтосекундная лазерная хирургия. Новосибирск: Наука; 2012. [Kostenev SV, Chernykh VV. Femtosekundnaya lazernaya khirurgiya. Novosibirsk: Nauka; 2012 (In Russ.).]

4. Reinstein D, Archer T, Randleman J. Mathematical Model to Compare the Relative Tensile Strength of the Cornea After PRK, LASIK, and Small Incision Lenticule Extraction. J Cataract Refract Surg. 2013;29(7): 454–60. doi.org/10.3928/1081597x-20130617-03.

5. Wei S, Wang Y. Comparison of corneal sensitivity between FS-LASIK and femtosecond lenticule extraction (ReLEx flex) or small-incision lenticule extraction (ReLEx smile) for myopic eyes. Graefes Arch Clin Exp Ophthalmol. 2013;251(6): 1645–54. doi.org/10.1007/ s00417-013-2361-0.

6. Khalifa MA, Ghoneim AM, Shaheen MS, Piñero DP. Vector analysis of astigmatic changes after small incision lenticule extraction and wave front guided laser in situ keratomileusis. J Cataract Refract Surg. 2017;43(6): 819–24. doi.org/10.1016/j.jcrs.2017.03.033.

7. Chan TC, Ng AL, Cheng GP, Wang Z, Ye C, Woo VC, et al. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecondassisted LASIK for low to moderate myopic astigmatism. Br J Ophthalmol. 2016;100: 553–9. doi.org/10.1136/ bjophthalmol-2015-307238.

8. Wu F, Yang Y, Dougherty PJ. Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system. Clin Exp Optom. 2009;92: 320–7. doi.org/10.1111/j.1444-0938.2009.00362.x.

9. Khalifa M, El-Kateb M, Shaheen MS. Iris registration in wavefront-guided LASIK to correct mixed astigmatism. J Cataract Refract Surg. 2009;35: 433–7. doi. org/10.1016/j.jcrs.2008.11.039.

10. Гамидов Г.А., Мушкова И.А., Костенев С.В., Гамидов А.А. Ранние клинико-функциональные результаты сравнения групп после операции СМАЙЛ с учетом и без учета циклоторсии. Современные технологии в офтальмологии. 2019;4: 50–5. [Gamidov GA, Mushkova IA, Kostenev SV, Gamidov AA. Rannie kliniko-funktsionalnye rezultaty sravneniya grupp posle operatsii SMILE s uchetom i bez ucheta tsiklotorsii. Sovremennye tekhnologii v oftalmologii. 2019;4: 50–5 (In Russ.).] doi.org/10.25276/2312-4911- 2019-4-50-55.

11. Chang J. Cyclotorsion during laser in situ keratomileusis. J Cataract Refract Surg. 2008;34: 1720– 6. doi.org/10.1016/j.jcrs.2008.06.027.

12. Shajari M, Buhren J, Kohnen T. Dynamic torsional misalignment of eyes during laser in-situ keratomileusis. Graefes Arch Clin Exp Ophthalmol. 2016;254: 911–6. doi.org/10.1007/s00417-016-3309-y.

13. Swami AU, Steinert RF, Osborne WE, White AA. Rotational malposition during laser in situ keratomileusis. Am J Ophthalmol. 2002;133(4): 561–2. doi.org/10.1016/s0002-9394(01)01401-5.

14. Ganesh S, Brar S, Pawar A. Results of Intraoperative Manual Cyclotorsion Compensation for Myopic Astigmatism in Patients Undergoing Small Incision Lenticule Extraction (SMILE). J Refract Surg. 2017;33(8): 506–12. doi.org/10.3928/108159 7x-20170328-01.

15. Chen P, Ye Y, Yu N, Zhang X, He J, Zheng H. Comparison of Small Incision Lenticule Extraction Surgery With and Without Cyclotorsion Error Correction for Patients With Astigmatism. Cornea. 2019;38(6): 723– 9. doi:10.1097/ico.0000000000001937.

16. Xu J, Liu F, Liu M, Yang X, Weng S, Lin L. Effect of Cyclotorsion Compensation With a Novel Technique in Small Incision Lenticule Extraction Surgery for the Correction of Myopic Astigmatism. J Refract Surg. 2019;35(5): 301–8. doi:10.3928/108159 7x-20190402-01.

17. Reinstein D, Archer T, Vida R, Carp G. Suction Stability Management in SMILE: Development of a Decision Tree for Managing Eye Movements and Suction Loss. J Refract Surg. 2019;34(12): 809–16. doi:10.3928/1 081597x-20181023-01.

18. Febbraro JL, Koch DD, Khan HN, Saad A, Gatinel D. Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis. J Cataract Refract Surg. 2010;36: 1718–23. doi. org/10.1016/j.jcrs.2010.05.019.

19. Prickett AL, Bui K, Hallak J, et al. Cyclotorsional and non-cyclotorsional components of eye rotation observed from sitting to supine position. Br J Ophthalmol. 2015;99: 49–53. doi.org/10.1136/ bjophthalmol-2014-304975.

Fyodorov Journal of Ophthalmic Surgery. 2020; : 18-25

Comparative analysis of the myopic astigmatism correction by the SMILE surgery with and without cyclotorsion compensation

Mushkova I. A., Kostenev S. V., Sobolev N. P., Gamidov G. A.

https://doi.org/10.25276/0235-4160-2020-1-18-25

Abstract

Purpose. To develop an alternative method of cyclotorsion compensation to improve the clinical and functional results in the correction of myopic astigmatism during the SMILE surgery.

Material and methods. Two equivalent groups were formed: without (the group I) and with (the group II) cyclotorsion compensation, 30 people (30 eyes) in each group. In both groups, cyclotorsion was determined to obtain equivalent samples. Immediately before the operation, the patient cornea had been marked using the slit lamp. To obtain numerical cyclotorsion data, a corneal protractor with a scale of 1-degree accuracy was developed. The corneal protractor was applied to the eye, comparing the scale of 0 degree and the horizontal section of the microscope eyepiece. The observed deviation of the corneal mark from the horizontal section indicated the value of cyclotorsion. All patients were examined
by a UDVA, CDVA, objective refraction 3 months after the SMILE surgery, Furthermore, indices of efficiency and safety were calculated.

Results. The mean and standard deviations of cyclotorsion in the groups I and II were 6.16±1.31 and 7.10±1.37 degree, respectively (p<0.05). An increase of 1 or more lines of CDVA in 20% and 7%, respectively was noted 3 months postoperatively in the groups I and II. The efficacy index was higher in the group II 3 months postoperatively, with a comparable safety index. The predictability of the cylindrical component within ±0.5D relatively to the target refraction (emmetropia) in the groups I and II was 40% and 100%, respectively (p<0.05).

Conclusion. The proposed method of cyclotorsion compensation allows to increase safely the predictability of laser correction for myopic astigmatism during the SMILE surgery and it is available because it doesn’t require expensive equipment. This method is recommended for a determination of cyclotorsion with a myopic astigmatism from -0.75 D and for an alignment of the astigmatism axis in a detection of cyclotorsion of more than ±5 degrees. 

References

1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5): 1036–42. doi:10.1016/j. ophtha.2016.01.006.

2. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. Cur. Ophthalmol. 2018;30(1): 3–22. doi:10.1016/j.joco.2017.08.009.

3. Kostenev S.V., Chernykh V.V. Femtosekundnaya lazernaya khirurgiya. Novosibirsk: Nauka; 2012. [Kostenev SV, Chernykh VV. Femtosekundnaya lazernaya khirurgiya. Novosibirsk: Nauka; 2012 (In Russ.).]

4. Reinstein D, Archer T, Randleman J. Mathematical Model to Compare the Relative Tensile Strength of the Cornea After PRK, LASIK, and Small Incision Lenticule Extraction. J Cataract Refract Surg. 2013;29(7): 454–60. doi.org/10.3928/1081597x-20130617-03.

5. Wei S, Wang Y. Comparison of corneal sensitivity between FS-LASIK and femtosecond lenticule extraction (ReLEx flex) or small-incision lenticule extraction (ReLEx smile) for myopic eyes. Graefes Arch Clin Exp Ophthalmol. 2013;251(6): 1645–54. doi.org/10.1007/ s00417-013-2361-0.

6. Khalifa MA, Ghoneim AM, Shaheen MS, Piñero DP. Vector analysis of astigmatic changes after small incision lenticule extraction and wave front guided laser in situ keratomileusis. J Cataract Refract Surg. 2017;43(6): 819–24. doi.org/10.1016/j.jcrs.2017.03.033.

7. Chan TC, Ng AL, Cheng GP, Wang Z, Ye C, Woo VC, et al. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecondassisted LASIK for low to moderate myopic astigmatism. Br J Ophthalmol. 2016;100: 553–9. doi.org/10.1136/ bjophthalmol-2015-307238.

8. Wu F, Yang Y, Dougherty PJ. Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system. Clin Exp Optom. 2009;92: 320–7. doi.org/10.1111/j.1444-0938.2009.00362.x.

9. Khalifa M, El-Kateb M, Shaheen MS. Iris registration in wavefront-guided LASIK to correct mixed astigmatism. J Cataract Refract Surg. 2009;35: 433–7. doi. org/10.1016/j.jcrs.2008.11.039.

10. Gamidov G.A., Mushkova I.A., Kostenev S.V., Gamidov A.A. Rannie kliniko-funktsional'nye rezul'taty sravneniya grupp posle operatsii SMAIL s uchetom i bez ucheta tsiklotorsii. Sovremennye tekhnologii v oftal'mologii. 2019;4: 50–5. [Gamidov GA, Mushkova IA, Kostenev SV, Gamidov AA. Rannie kliniko-funktsionalnye rezultaty sravneniya grupp posle operatsii SMILE s uchetom i bez ucheta tsiklotorsii. Sovremennye tekhnologii v oftalmologii. 2019;4: 50–5 (In Russ.).] doi.org/10.25276/2312-4911- 2019-4-50-55.

11. Chang J. Cyclotorsion during laser in situ keratomileusis. J Cataract Refract Surg. 2008;34: 1720– 6. doi.org/10.1016/j.jcrs.2008.06.027.

12. Shajari M, Buhren J, Kohnen T. Dynamic torsional misalignment of eyes during laser in-situ keratomileusis. Graefes Arch Clin Exp Ophthalmol. 2016;254: 911–6. doi.org/10.1007/s00417-016-3309-y.

13. Swami AU, Steinert RF, Osborne WE, White AA. Rotational malposition during laser in situ keratomileusis. Am J Ophthalmol. 2002;133(4): 561–2. doi.org/10.1016/s0002-9394(01)01401-5.

14. Ganesh S, Brar S, Pawar A. Results of Intraoperative Manual Cyclotorsion Compensation for Myopic Astigmatism in Patients Undergoing Small Incision Lenticule Extraction (SMILE). J Refract Surg. 2017;33(8): 506–12. doi.org/10.3928/108159 7x-20170328-01.

15. Chen P, Ye Y, Yu N, Zhang X, He J, Zheng H. Comparison of Small Incision Lenticule Extraction Surgery With and Without Cyclotorsion Error Correction for Patients With Astigmatism. Cornea. 2019;38(6): 723– 9. doi:10.1097/ico.0000000000001937.

16. Xu J, Liu F, Liu M, Yang X, Weng S, Lin L. Effect of Cyclotorsion Compensation With a Novel Technique in Small Incision Lenticule Extraction Surgery for the Correction of Myopic Astigmatism. J Refract Surg. 2019;35(5): 301–8. doi:10.3928/108159 7x-20190402-01.

17. Reinstein D, Archer T, Vida R, Carp G. Suction Stability Management in SMILE: Development of a Decision Tree for Managing Eye Movements and Suction Loss. J Refract Surg. 2019;34(12): 809–16. doi:10.3928/1 081597x-20181023-01.

18. Febbraro JL, Koch DD, Khan HN, Saad A, Gatinel D. Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis. J Cataract Refract Surg. 2010;36: 1718–23. doi. org/10.1016/j.jcrs.2010.05.019.

19. Prickett AL, Bui K, Hallak J, et al. Cyclotorsional and non-cyclotorsional components of eye rotation observed from sitting to supine position. Br J Ophthalmol. 2015;99: 49–53. doi.org/10.1136/ bjophthalmol-2014-304975.