Офтальмохирургия. 2019; : 67-72
Современный взгляд на циклодеструктивные операции при глаукоме
Зубашева С. А., Мяконькая О. С., Газизова И. Р., Селезнев А. В., Куроедов А. В.
https://doi.org/10.25276/0235-4160-2019-4-67-72Аннотация
Основная цель лечения глаукомы – снижение ВГД до ≪целевого≫ уровня. К патогенетически обоснованным способам лечения различных видов глаукомы, в первую очередь ее рефрактерных форм, относятся вмешательства на цилиарном теле (циклодеструктивные операции, ЦДО), цель которых – подавление избыточного образования внутриглазной жидкости (ВГЖ). Ранее была широко распространена диодлазерная циклофотокоагуляция (ДЛЦФК), применяемая в основном при терминальной глаукоме. Технологические инновации привели к разработке перспективных, более безопасных и менее разрушительных методов циклодеструктивных антиглаукомных операций, таких как микроимпульсная диодная циклофотокоагуляция, эндоскопическая циклофотокоагуляция и ультразвуковая циклодеструкция. При микроимпульсной циклофотокоагуляции воздействие лазерной энергии происходит короткими импульсами с интервалами покоя, что значительно уменьшает поглощение энергии окружающими тканями и их сопутствующее повреждение. При эндоскопической циклофотокоагуляции напрямую коагулируется эпителий цилиарных отростков, что позволяет дозировать лазерную энергию под визуальным контролем. Ультразвуковая циклодеструкция вызывает коагуляционный некроз цилиарных отростков с очень незначительным побочным повреждением окружающих тканей. Возникает новый сдвиг парадигмы с выбором этих хирургических методик при лечении рефрактерной глаукомы. Данный обзор представляет собой анализ современной литературы, отражающий эффективность и безопасность циклодеструктивных антиглаукомных операций при сохранных зрительных функциях.
Список литературы
1. Gazizova I., Avdeev R., Aleksandrov A. et al. Multicenter study of intraocular pressure level in patients with moderate and advanced primary open-angle glaucoma on treatment. Invest. Ophthalmol. Vis. Sci. 2016;57(12): 6470. doi.org/10.17816/OV2015143-60.
2. Дробышева И.С. Наш опыт лечения рефрактерной терминальной глаукомы. Отчеты Тамбовского университета. Сер.: Естественно-технические науки. 2016;21(4): 1525–8. doi.org/10.20310/1810-0198-2016-21-4-1525-1528.
3. Полунина М.А., Карлова Е.В., Радайкина М.В. и др. Неоваскулярная глаукома: ретроспективный анализ трехлетнего опыта хирургического лечения пациентов. Медицинский вестник Башкортостана. 2016;11(1): 78–81.
4. Юрьева Т.Н., Кузьмин С.В., Бурий В.В. Лазерная и криохирургия неоваскулярной глаукомы. Вестник российских университетов. Математика. 2015;20(3): 723–7.
5. Vila-Arteaga J, Stirbu O, Suriano MM, Vila- Mascarell EJ. A New Technique for Diode Laser Cyclophotocoagulation. J Glaucoma. 2014;23(1): 35–6. doi.org/10.1097/ijg.0b013e31826981b1.
6. Masis Solano M, Huang G, Lin SC. When Should We Give Up Filtration Surgery: Indications, Techniques and Results of Cyclodestruction. Dev. Ophthal. 2017;59: 179–90. doi.org/10.1159/000458496.
7. Kraus CL, Tychsen L, Lueder GT, Culican SM. Comparison of the Effectiveness and Safety of Transscleral Cyclophotocoagulation and Endoscopic Cyclophotocoagulation in Pediatric Glaucoma. J Ped Ophthalmol Strab. 2014;51(2): 120–7. dx.doi.org/10.3928/01913913-20140211-01.
8. Rahmatnejad K, Ndulue J, Sanvicente C, et al. Evolution of cyclophotocoagulation. J. Ophthal Vis Res. 2018;13(1): 55. doi.org/10.4103/jovr.jovr_190_17.
9. Елисеева М.А., Ходжаев Н.С., Сидорова А.В. и др. Микроимпульсная транссклеральная циклофотокоагуляция в комбинированном хирургическом лечении рефрактерной глаукомы: предварительные результаты. Современные технологии в офтальмологии. 2019;(4): 95–8. doi.org/10.25276/2312-4911-2019-4-95-98.
10. Куликов А.Н., Скворцов В.Ю., Тулин Д.В. Безопасность и эффективность эндоскопической лазерной циклодеструкции при комбинированном хирургическом лечении глаукомы и катаракты. Современные технологии в офтальмологии. 2018;(5): 74–6. doi.org/10.25276/2312-4911-2018-5-74-76.
11. Yang Y, Zhong J, Dun Z, et al. Comparison of Efficacy Between Endoscopic Cyclophotocoagulation and Alternative Surgeries in Refractory Glaucoma. Medicine. 2015;94(39): 1651. doi.org/10.1097/md.0000000000001651.
12. Yang Y, Zhong J, Dun Z, et al. Comparison of Efficacy Between Endoscopic Cyclophotocoagulation and Alternative Surgeries in Refractory Glaucoma. Medicine. 2015;94(39): 1651. doi.org/10.1097/md.0000000000001651.
13. Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive Procedures in Glaucoma: A Review of Current and Emerging Options. Adv. Ther. 2018;Dec;35(12): 2103–27. doi.org/10.1007/s12325-018-0837-3.
14. Chen MF, Kim CH, Coleman AL. Cyclodestructive procedures for refractory glaucoma. Cochrane Database Syst Rev. 2019;0;3: CD012223. doi.org/10.1002/14651858.CD012223.pub2.
15. Мовсисян А.Б., Егоров А.Е., Кац Д.В. и др. Метод адресной доставки лекарств в задний сегмент глаза. Клиническая офтальмология 2018;18(1): 26–9. doi.org/10.21689/2311-7729-2018-18-1-26-29.
16. Липатов Д.В., Чистяков Т.А., Кузьмин А.Г., Толкачева А.А. Оценка эффективности контактной транссклеральной диодлазерной циклокоагуляции после дренажной хирургии неоваскулярной глаукомы. Сахарный диабет. Эндокринологический научный центр. 2017;20(4): 257–62. doi.org/10.14341/dm8256.
17. Wang MY, Patel K, Blieden LS, et al. Comparison of Efficacy and Complications of Cyclophotocoagulation and Second Glaucoma Drainage Device After Initial Glaucoma Drainage Device Failure. J Glaucoma. 2017;11: 1010–18. doi.org/10.1097/ijg.0000000000000766.
18. Rosentreter A, Gaki S, Lappas A, et al. Previous cyclodestruction is a risk factor for late-onset hypotony and suprachoroidal haemorrhage after glaucoma drainage device surgery. Br J Ophthalmol. 2013;97(6): 715–9. doi.org/10.1136/bjophthalmol-2012-302351.
19. Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst. Rev. 2018;4:CD009313. doi.org/10.1002/14651858.cd009313.
20. Schaefer JL, Levine MA, Martorana G, et al. Failed glaucoma drainage implant: long-term outcomes of a second glaucoma drainage device versus cyclophotocoagulation. Br. J. Ophthalmol. 2015;99: 1718–24. doi.org/10.1136/bjophthalmol-2015-306725.
21. Rodríguez-García A, González-González LA, Carlos Alvarez-Guzmán J. Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty. Int. Ophthalmol. 2016;36: 373–83. doi.org/10.1007/s10792-015-0130-2.
22. Gorsler I, Thieme H, Meltendorf C. Cyclophotocoagulation and cyclocryocoagulation as primary surgical procedures for open-angle glaucoma. Graefes Arch Clin. Exp. Ophthalmol. 2015;253: 2273–7. doi.org/10.1007/s00417-015-3159-z.
23. Choy BNK, Lai JSM, Yeung JCC, Chan JCH. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese – a pilot study. Clin. Ophthalmol. 2018;(12): 2545–52. doi.org/10.2147/OPTH.S188999.
24. Фокин В.П., Балалин С.В., Ефремова Т.Г., Потапова В.Н. Интравитреальное введение Луцентиса и транссклеральная циклофотокоагуляция в лечении неоваскулярной глаукомы на фоне сахарного диабета. Acta Biomedica Scientifica. 2016;1(6): 122–4. doi.org/10.12737/23792.
25. Балалин С.В., Ефремова Т.Г., Потапова В.Н. Применение анти-VEGF-препapaтов и транссклеральной циклофотокоагуляции в лечении неоваскулярной глаукомы на фоне сахарного диабета. Практическая медицина. 2016;6(98): 12–4.
26. Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Uncontrolled Glaucoma Patients. J. Glaucoma. 2018;28(3): 270–5. doi.org/10.1097/IJG.0000000000001174.
27. Aquino MCD, Barton K, Tan AMWT, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin. Exp. Ophthalmol. 2014;43(1): 40–6. doi.org/10.1111/ceo.12360.
28. Emanuel ME, Grover DS, Fellman RL, et al. Micropulse cyclophotocoagulation: Initial results in refractory glaucoma. J. Glaucoma. 2017;26(8): 726–9. doi.org/10.1097/ijg.0000000000000715.
29. Lee JH, Shi Y, Amoozgar B, et al. Outcome of Micropulse Laser Transscleral Cyclophotocoagulation on Pediatric Versus Adult Glaucoma Patients. J. Glaucoma. 2017;26(10): 936–9. doi.org/10.1097/IJG.0000000000000757.
30. Denis P, Aptel F, Rouland J-F, et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol. Vis. Sci. 2015;56(2): 1089–96. doi.org/10.1167/iovs.14-14973.
31. Aptel F, Denis P. Ultrasonic circular cyclocoagulation. In: Samples J., Ahmed I, editors. Surg. Innov. Glaucoma. New York: Springer; 2013. doi.org/10.1007/978-1-4614-8348-9_11.
32. Melamed S, Goldenfeld M, Cotlear D, et al. Highintensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study. Eur. J. Ophthalmol. 2015;25(6): 483–9. doi.org/10.5301/ejo.5000620.
33. Giannaccare G, Vagge A, Gizzi C, et al. Highintensity focused ultrasound treatment in patients with refractory glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2016;255(3): 599–605. doi.org/10.1007/s00417-016-3563-z.
34. Aptel F, Denis P, Rouland J-F, et al. Multicenter clinical trial of high-intensity focused ultrasound treatment in glaucoma patients without previous filtering surgery. Acta Ophthalmol. (Copenh). 2015;94: e268–e277. doi.org/10.1111/aos.12913.
35. Denis P. Clinical research of ultrasound ciliary plasty and implications for clinical practice. Eur Ophthalmic Rev. 2016;10(2): 108–12. doi.org/10.17925/eor.2016.10.02.108.
36. Graber M, Khoueir Z, Beauchet A, et al. Highintensity focused ultrasound as first line treatment in patients with chronicangle closure glaucoma at risk for malignant glaucoma. J. Fr. Ophtalmol. 2017;40(4): 264–9. doi.org/10.1016/j.jfo.2016.10.013.
37. Graber M, Rothschild PR, Khoueir Z, et al. High intensity focused ultrasound cyclodestruction versus cyclodiode treatment ofrefractory glaucoma: A retrospective comparative study. J. Fr. Ophtalmol. 2018;41(7): 611–8. doi.org/10.1016/j.jfo.2018.02.005.
38. Kaplowitz K, Kuei A, Klenofsky B, et al. (2014). The use of endoscopic cyclophotocoagulation for moderate to advanced glaucoma. Acta Ophthalmol. 2014;93(5): 395–401. doi.org/10.1111/aos.12529.
39. Cohen A, Wong SH, Patel S, Tsai JC. Endoscopic cyclophotocoagulation for the treatment of glaucoma. Survey of Ophthalmology. 2017;62(3): 357–65. doi.org/10.1016/j.survophthal.2016.09.004.
40. Sun W, Yu CY, Tong JP. A review of combined phacoemulsification and endoscopic cyclophotocoagulation: efficacy and safety. Int. J. Ophthalmol. 2018;11(8): 1396–402. doi.org/10.18240/ijo.2018.08.23.
41. Lindfield D, Ritchie RW, Griffiths MF. «Phaco-ECP»: combined endoscopic cyclophotocoagulation and cataract surgery to augment medical control of glaucoma. B.M.J. Open. 2012;2: e000578. doi.org/10.1136/bmjopen-2011-000578.
42. Clement CI, Kampougeris G, Ahmed F, et al. Combining phacoemulsification with endoscopic cyclophotocoagulation to manage cataract and glaucoma. Clin. Exp. Ophthalmol. 2013;41(6): 546–51. doi.org/10.1111/ceo.12051.
43. Francis BA, Berke SJ, Dustin L, Noecker R. Endoscopic cyclophotocoagulation combined with phacoemulsification versus phacoemulsification alone in medically controlled glaucoma. J. Cataract. Refract. Surg. 2014;40(8): 1313–21. doi.org/10.1016/j.jcrs.2014.06.021.
44. Siegel MJ, Boling WS, Faridi OS, et al. Combined endoscopic cyclophotocoagulation and phacoemulsification versus phacoemulsification alone in the treatment of mild to moderate glaucoma. Clin Exp Ophthalmol. 2015;43(6): 531–9. doi.org/10.1111/ceo.12510.
45. Roberts SJ, Mulvahill M, SooHoo JR, et al. Efficacy of combined cataract extraction and endoscopic cyclophotocoagulation for the reduction of intraocular pressure and medication burden. Int J Ophthalmol. 2016;9(5): 693–8. doi.org/10.18240/ijo.2016.05.09.
Fyodorov Journal of Ophthalmic Surgery. 2019; : 67-72
A modern view of cyclodestructive surgery for glaucoma
Zubasheva S. A., Мyakonkaya O. S., Gazizova I. R., Seleznev A. V., Kuroedov A. V.
https://doi.org/10.25276/0235-4160-2019-4-67-72Abstract
The main purpose of glaucoma treatment is to reduce the intraocular pressure (IOP) to a target level. One of the pathogenetically justified method of treatment for various types of glaucoma, first of all its refractory forms, is the surgery on the ciliary body. A purpose of such manipulations is to suppress excessive formation of aqueous humor. Previously, diode laser cyclophotocoagulation was widely used, which is mainly applied in terminal glaucoma. Technological innovations have led to the development of perspective, more safe, and less destructive methods of cyclodestructive anti-glaucomatous operations, such as micro-pulse diode cyclophotocoagulation, endoscopic cyclophotocoagulation, and ultrasound cyclodestruction. During micro-pulse cyclophotocoagulation, the effect of laser energy occurs by short pulses at rest intervals, which significantly reduces the absorption of energy by surrounding tissues and their associated damage. With endoscopic cyclophotocoagulation, the epithelium of the ciliary processes is directly coagulated, which makes it possible to dose laser energy under visual control. Ultrasonic cyclodestruction causes a coagulation necrosis of the ciliary processes with a very insignificant collateral damage of surrounding tissues. Today these surgical techniques are becoming more relevant in the treatment of refractory glaucoma in order to preserve visual functions. This review is an analysis of modern literature, reflecting the efficacy and safety of cyclodestructive operations with sufficiently high visual functions.
References
1. Gazizova I., Avdeev R., Aleksandrov A. et al. Multicenter study of intraocular pressure level in patients with moderate and advanced primary open-angle glaucoma on treatment. Invest. Ophthalmol. Vis. Sci. 2016;57(12): 6470. doi.org/10.17816/OV2015143-60.
2. Drobysheva I.S. Nash opyt lecheniya refrakternoi terminal'noi glaukomy. Otchety Tambovskogo universiteta. Ser.: Estestvenno-tekhnicheskie nauki. 2016;21(4): 1525–8. doi.org/10.20310/1810-0198-2016-21-4-1525-1528.
3. Polunina M.A., Karlova E.V., Radaikina M.V. i dr. Neovaskulyarnaya glaukoma: retrospektivnyi analiz trekhletnego opyta khirurgicheskogo lecheniya patsientov. Meditsinskii vestnik Bashkortostana. 2016;11(1): 78–81.
4. Yur'eva T.N., Kuz'min S.V., Burii V.V. Lazernaya i kriokhirurgiya neovaskulyarnoi glaukomy. Vestnik rossiiskikh universitetov. Matematika. 2015;20(3): 723–7.
5. Vila-Arteaga J, Stirbu O, Suriano MM, Vila- Mascarell EJ. A New Technique for Diode Laser Cyclophotocoagulation. J Glaucoma. 2014;23(1): 35–6. doi.org/10.1097/ijg.0b013e31826981b1.
6. Masis Solano M, Huang G, Lin SC. When Should We Give Up Filtration Surgery: Indications, Techniques and Results of Cyclodestruction. Dev. Ophthal. 2017;59: 179–90. doi.org/10.1159/000458496.
7. Kraus CL, Tychsen L, Lueder GT, Culican SM. Comparison of the Effectiveness and Safety of Transscleral Cyclophotocoagulation and Endoscopic Cyclophotocoagulation in Pediatric Glaucoma. J Ped Ophthalmol Strab. 2014;51(2): 120–7. dx.doi.org/10.3928/01913913-20140211-01.
8. Rahmatnejad K, Ndulue J, Sanvicente C, et al. Evolution of cyclophotocoagulation. J. Ophthal Vis Res. 2018;13(1): 55. doi.org/10.4103/jovr.jovr_190_17.
9. Eliseeva M.A., Khodzhaev N.S., Sidorova A.V. i dr. Mikroimpul'snaya transskleral'naya tsiklofotokoagulyatsiya v kombinirovannom khirurgicheskom lechenii refrakternoi glaukomy: predvaritel'nye rezul'taty. Sovremennye tekhnologii v oftal'mologii. 2019;(4): 95–8. doi.org/10.25276/2312-4911-2019-4-95-98.
10. Kulikov A.N., Skvortsov V.Yu., Tulin D.V. Bezopasnost' i effektivnost' endoskopicheskoi lazernoi tsiklodestruktsii pri kombinirovannom khirurgicheskom lechenii glaukomy i katarakty. Sovremennye tekhnologii v oftal'mologii. 2018;(5): 74–6. doi.org/10.25276/2312-4911-2018-5-74-76.
11. Yang Y, Zhong J, Dun Z, et al. Comparison of Efficacy Between Endoscopic Cyclophotocoagulation and Alternative Surgeries in Refractory Glaucoma. Medicine. 2015;94(39): 1651. doi.org/10.1097/md.0000000000001651.
12. Yang Y, Zhong J, Dun Z, et al. Comparison of Efficacy Between Endoscopic Cyclophotocoagulation and Alternative Surgeries in Refractory Glaucoma. Medicine. 2015;94(39): 1651. doi.org/10.1097/md.0000000000001651.
13. Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive Procedures in Glaucoma: A Review of Current and Emerging Options. Adv. Ther. 2018;Dec;35(12): 2103–27. doi.org/10.1007/s12325-018-0837-3.
14. Chen MF, Kim CH, Coleman AL. Cyclodestructive procedures for refractory glaucoma. Cochrane Database Syst Rev. 2019;0;3: CD012223. doi.org/10.1002/14651858.CD012223.pub2.
15. Movsisyan A.B., Egorov A.E., Kats D.V. i dr. Metod adresnoi dostavki lekarstv v zadnii segment glaza. Klinicheskaya oftal'mologiya 2018;18(1): 26–9. doi.org/10.21689/2311-7729-2018-18-1-26-29.
16. Lipatov D.V., Chistyakov T.A., Kuz'min A.G., Tolkacheva A.A. Otsenka effektivnosti kontaktnoi transskleral'noi diodlazernoi tsiklokoagulyatsii posle drenazhnoi khirurgii neovaskulyarnoi glaukomy. Sakharnyi diabet. Endokrinologicheskii nauchnyi tsentr. 2017;20(4): 257–62. doi.org/10.14341/dm8256.
17. Wang MY, Patel K, Blieden LS, et al. Comparison of Efficacy and Complications of Cyclophotocoagulation and Second Glaucoma Drainage Device After Initial Glaucoma Drainage Device Failure. J Glaucoma. 2017;11: 1010–18. doi.org/10.1097/ijg.0000000000000766.
18. Rosentreter A, Gaki S, Lappas A, et al. Previous cyclodestruction is a risk factor for late-onset hypotony and suprachoroidal haemorrhage after glaucoma drainage device surgery. Br J Ophthalmol. 2013;97(6): 715–9. doi.org/10.1136/bjophthalmol-2012-302351.
19. Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst. Rev. 2018;4:CD009313. doi.org/10.1002/14651858.cd009313.
20. Schaefer JL, Levine MA, Martorana G, et al. Failed glaucoma drainage implant: long-term outcomes of a second glaucoma drainage device versus cyclophotocoagulation. Br. J. Ophthalmol. 2015;99: 1718–24. doi.org/10.1136/bjophthalmol-2015-306725.
21. Rodríguez-García A, González-González LA, Carlos Alvarez-Guzmán J. Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty. Int. Ophthalmol. 2016;36: 373–83. doi.org/10.1007/s10792-015-0130-2.
22. Gorsler I, Thieme H, Meltendorf C. Cyclophotocoagulation and cyclocryocoagulation as primary surgical procedures for open-angle glaucoma. Graefes Arch Clin. Exp. Ophthalmol. 2015;253: 2273–7. doi.org/10.1007/s00417-015-3159-z.
23. Choy BNK, Lai JSM, Yeung JCC, Chan JCH. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese – a pilot study. Clin. Ophthalmol. 2018;(12): 2545–52. doi.org/10.2147/OPTH.S188999.
24. Fokin V.P., Balalin S.V., Efremova T.G., Potapova V.N. Intravitreal'noe vvedenie Lutsentisa i transskleral'naya tsiklofotokoagulyatsiya v lechenii neovaskulyarnoi glaukomy na fone sakharnogo diabeta. Acta Biomedica Scientifica. 2016;1(6): 122–4. doi.org/10.12737/23792.
25. Balalin S.V., Efremova T.G., Potapova V.N. Primenenie anti-VEGF-prepapatov i transskleral'noi tsiklofotokoagulyatsii v lechenii neovaskulyarnoi glaukomy na fone sakharnogo diabeta. Prakticheskaya meditsina. 2016;6(98): 12–4.
26. Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Uncontrolled Glaucoma Patients. J. Glaucoma. 2018;28(3): 270–5. doi.org/10.1097/IJG.0000000000001174.
27. Aquino MCD, Barton K, Tan AMWT, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin. Exp. Ophthalmol. 2014;43(1): 40–6. doi.org/10.1111/ceo.12360.
28. Emanuel ME, Grover DS, Fellman RL, et al. Micropulse cyclophotocoagulation: Initial results in refractory glaucoma. J. Glaucoma. 2017;26(8): 726–9. doi.org/10.1097/ijg.0000000000000715.
29. Lee JH, Shi Y, Amoozgar B, et al. Outcome of Micropulse Laser Transscleral Cyclophotocoagulation on Pediatric Versus Adult Glaucoma Patients. J. Glaucoma. 2017;26(10): 936–9. doi.org/10.1097/IJG.0000000000000757.
30. Denis P, Aptel F, Rouland J-F, et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol. Vis. Sci. 2015;56(2): 1089–96. doi.org/10.1167/iovs.14-14973.
31. Aptel F, Denis P. Ultrasonic circular cyclocoagulation. In: Samples J., Ahmed I, editors. Surg. Innov. Glaucoma. New York: Springer; 2013. doi.org/10.1007/978-1-4614-8348-9_11.
32. Melamed S, Goldenfeld M, Cotlear D, et al. Highintensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study. Eur. J. Ophthalmol. 2015;25(6): 483–9. doi.org/10.5301/ejo.5000620.
33. Giannaccare G, Vagge A, Gizzi C, et al. Highintensity focused ultrasound treatment in patients with refractory glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2016;255(3): 599–605. doi.org/10.1007/s00417-016-3563-z.
34. Aptel F, Denis P, Rouland J-F, et al. Multicenter clinical trial of high-intensity focused ultrasound treatment in glaucoma patients without previous filtering surgery. Acta Ophthalmol. (Copenh). 2015;94: e268–e277. doi.org/10.1111/aos.12913.
35. Denis P. Clinical research of ultrasound ciliary plasty and implications for clinical practice. Eur Ophthalmic Rev. 2016;10(2): 108–12. doi.org/10.17925/eor.2016.10.02.108.
36. Graber M, Khoueir Z, Beauchet A, et al. Highintensity focused ultrasound as first line treatment in patients with chronicangle closure glaucoma at risk for malignant glaucoma. J. Fr. Ophtalmol. 2017;40(4): 264–9. doi.org/10.1016/j.jfo.2016.10.013.
37. Graber M, Rothschild PR, Khoueir Z, et al. High intensity focused ultrasound cyclodestruction versus cyclodiode treatment ofrefractory glaucoma: A retrospective comparative study. J. Fr. Ophtalmol. 2018;41(7): 611–8. doi.org/10.1016/j.jfo.2018.02.005.
38. Kaplowitz K, Kuei A, Klenofsky B, et al. (2014). The use of endoscopic cyclophotocoagulation for moderate to advanced glaucoma. Acta Ophthalmol. 2014;93(5): 395–401. doi.org/10.1111/aos.12529.
39. Cohen A, Wong SH, Patel S, Tsai JC. Endoscopic cyclophotocoagulation for the treatment of glaucoma. Survey of Ophthalmology. 2017;62(3): 357–65. doi.org/10.1016/j.survophthal.2016.09.004.
40. Sun W, Yu CY, Tong JP. A review of combined phacoemulsification and endoscopic cyclophotocoagulation: efficacy and safety. Int. J. Ophthalmol. 2018;11(8): 1396–402. doi.org/10.18240/ijo.2018.08.23.
41. Lindfield D, Ritchie RW, Griffiths MF. «Phaco-ECP»: combined endoscopic cyclophotocoagulation and cataract surgery to augment medical control of glaucoma. B.M.J. Open. 2012;2: e000578. doi.org/10.1136/bmjopen-2011-000578.
42. Clement CI, Kampougeris G, Ahmed F, et al. Combining phacoemulsification with endoscopic cyclophotocoagulation to manage cataract and glaucoma. Clin. Exp. Ophthalmol. 2013;41(6): 546–51. doi.org/10.1111/ceo.12051.
43. Francis BA, Berke SJ, Dustin L, Noecker R. Endoscopic cyclophotocoagulation combined with phacoemulsification versus phacoemulsification alone in medically controlled glaucoma. J. Cataract. Refract. Surg. 2014;40(8): 1313–21. doi.org/10.1016/j.jcrs.2014.06.021.
44. Siegel MJ, Boling WS, Faridi OS, et al. Combined endoscopic cyclophotocoagulation and phacoemulsification versus phacoemulsification alone in the treatment of mild to moderate glaucoma. Clin Exp Ophthalmol. 2015;43(6): 531–9. doi.org/10.1111/ceo.12510.
45. Roberts SJ, Mulvahill M, SooHoo JR, et al. Efficacy of combined cataract extraction and endoscopic cyclophotocoagulation for the reduction of intraocular pressure and medication burden. Int J Ophthalmol. 2016;9(5): 693–8. doi.org/10.18240/ijo.2016.05.09.
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38