Журналов:     Статей:        

Офтальмохирургия. 2017; : 87-91

НОРМАТИВНЫЕ БАЗЫ ДАННЫХ ПРИБОРОВ ДЛЯ ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ (ОБЗОР ЛИТЕРАТУРЫ)

Шпак А. А., Коробкова М. В., Баласанян В. О.

https://doi.org/10.25276/0235-4160-2017-4-87-91

Аннотация

Анализ количественных результатов оптической когерентной томографии (ОКТ) предусматривает их сопоставление с нормативными базами данных. По своей структуре существующие нормативные базы основных приборов для ОКТ принципиально не различаются. В большинстве своем они являются диверсифицированными (включают лиц различной этнической принадлежности) и имеют существенные ограничения по возрасту и рефракции (длине глаз), что негативно сказывается на диагностических возможностях метода ОКТ, особенно у лиц с крайними значениями указанных параметров. Предложены или находятся в разработке базы данных для детей и лиц старше 80 лет, однако они не включены в состав программного обеспечения приборов для ОКТ. Корректная оценка результатов у пациентов с аномалиями рефракции высокой степени возможна только при использовании специализированных баз данных, примером которых может служить база «длинных глаз» приборов Nidek серии RS для представителей азиатской расы. Весьма актуальна разработка подобных баз для всех этнических групп населения (или диверсифицированных) для этого и других приборов. Ограниченное значение имеют также способы количественного расчета влияния оптической системы глаз с аномалиями рефракции на некоторые параметры, измеряемые с помощью ОКТ.

Список литературы

1. Белогурова А.В. Дифференциально-диагностические критерии и мониторинг глаукомного процесса при осевой миопии: Автореф. дис. … канд. мед. наук. – М., 2016. – 22 с.

2. Казакова А.В., Эскина Э.Н. Диагностика глаукомы у пациентов с близорукостью // Национальный журнал Глаукома. – 2015. – Т. 14, № 3. – С. 87-100.

3. Экгардт В.Ф., Дорофеев Д.А., Шаимов Т.Б., Деев Р.В. О размерах диска зрительного нерва // Казанский медицинский журнал. – 2013. – Т. 94, № 6. – С. 850-853.

4. Эфендиева М.Э. Сравнительная оценка толщины слоя нервных волокон сетчатки у пациентов с миопией разной степени // Вестн. офтальмол. – 2014. – № 4. – С. 18-21.

5. Akashi A., Kanamori A., Ueda K. et al. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls // Invest. Ophthalmol. Vis. Sci. – 2015. – Vol. 56, № 11. – P. 6573-6580.

6. Al-Haddad C., Barikian A., Jaroudi M. et al. Spectral domain optical coherence tomography in children: normative data and biometric correlations // BMC Ophthalmol. – 2014. – Vol. 14, № 53. – 8 p.

7. Appukuttan B., Giridhar A., Gopalakrishnan M., Sivaprasad S. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians // Indian J. Ophthalmol. – 2014. – Vol. 62, № 3. – P. 316-321.

8. Barrio-Barrio J., Noval S., Galdós M. et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children // Acta Ophthalmol. – 2013. – Vol. 91, № 1. – P. e56-e63.

9. Bennett A.G., Rudnicka A.R., Edgar D.F. Improvements on Littmann’s method of determining the size of retinal features by fundus photography // Graefes Arch. Clin. Exp. Ophthalmol. – 1994. – Vol. 232, № 6. – P. 361-367.

10. Biswas S., Lin C., Leung C.K. Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness // JAMA Ophthalmol. – Vol. 134, № 9. – P. 1032-1039.

11. Choi S.W., Lee S.J. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia // Korean J. Ophthalmol. – 2006. – Vol. 20, № 4. – P. 215-219.

12. Choi Y.J., Jeoung J.W., Park K.H., Kim D.M. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 3. – P. 2296-2304.

13. Cirrus HD-OCT User Manual – Models 500, 5000. Carl Zeiss Meditec, Inc., 2015.

14. Garway-Heath D.F., Rudnicka A.R., Lowe T. et al. Measurement of optic disc size: equivalence of methods to correct for ocular magnification // Br. J. Ophthalmol. – 1998. – Vol. 82, № 6. – P. 643-649.

15. Gürağaç F.B., Totan Y., Güler E. et al. Normative spectral domain optical coherence tomography data in healthy turkish children // Semin. Ophthalmol. – 2017. – Vol. 32, № 2. – P. 216-222.

16. Hong S.W., Ahn M.D., Kang S.H., Im S.K. Analysis of peripapillary retinal nerve fiber distribution in normal young adults // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 7. – P. 3515-3523.

17. Huang D., Chopra V., Lu A.T. et al. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? // Invest. Ophthalmol. Vis. Sci. – 2012. – Vol. 53, № 8. – P. 4990-4997.

18. Kim N.R., Lee E.S., Seong G.J. et al. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia // Br. J. Ophthalmol. – 2011. – Vol. 95, № 8. – P. 1115-1121.

19. Knight O.J., Girkin C.A., Budenz D.L. et al. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT // Arch. Ophthalmol. – 2012. – Vol. 130, № 3. – P. 312-318.

20. Littmann H. Zur Bestimmung der wahren Grosse eines Objektes auf dem Hintergrund des lebenden Auges // Klin. Monatsbl. Augenheilkd. – 1982. – Bd. 180, № 4. – S. 286-289.

21. Mohammad Salih P.A. Evaluation of peripapillary retinal nerve fiber layer thickness in myopic eyes by spectral-domain optical coherence tomography // J. Glaucoma. – 2012. – Vol. 21, № 1. – P. 41-44.

22. Nakanishi H., Akagi T., Hangai M. et al. Sensitivity and specificity for detecting early glaucoma in eyes with high myopia from normative database of macular ganglion cell complex thickness obtained from normal non-myopic or highly myopic Asian eyes // Graefes Arch. Clin. Exp. Ophthalmol. – 2015. – Vol. 253, № 7. – P. 1143-1152.

23. Natung T., Keditsu A., Lyngdoh L.A. et al. Normal macular thickness in healthy indian eyes using spectral domain optical coherence tomography // Asia Pac. J. Ophthalmol. (Phila). – 2016. – Vol. 5, № 3. – P. 176-179.

24. Nidek Co., Ltd. Software for RS series Long Axial Length Normative Database. – Http://www.nidek-intl. com/product/ophthaloptom/diagnostic/dia_retina/ longaxiallength.html.

25. Optical coherence tomography OCT-HS100: Operation manual; software version 3.0. – Canon, 2013.

26. Rao A. Sahoo B., Kumar M. et al. Retinal nerve fiber layer thickness in children <18 years by spectraldomain optical coherence tomography // Semin Ophthalmol. – 2013. – Vol. 28, № 2. – P. 97-102.

27. Realini T., Zangwill L.M., Flanagan J.G. et al. Normative databases for imaging instrumentation // J. Glaucoma. – 2015. – Vol. 24, № 6. – P. 480-483.

28. Röck T., Wilhelm B., Bartz-Schmidt K.U., Röck D. The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study // Graefes Arch. Clin. Exp. Ophthalmol. – 2014. – Vol. 252, № 4. – P. 589-593.

29. Rougier M.B., Korobelnik J.F., Malet F. et al. Retinal nerve fibre layer thickness measured with SDOCT in a population-based study of French elderly subjects: the Alienor study // Acta Ophthalmol. – 2015. – Vol. 93, № 6. – P. 539-545.

30. RTVue XR 100 Avanty edition: User’s manual; software version 2014.1. – Optovue Inc., 2014. – 43 p.

31. Savini G., Barboni P., Parisi V., Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectraldomain OCT // Br. J. Ophthalmol. – 2012. – Vol. 96, № 1. – P. 57-61.

32. Shoji T., Sato H., Ishida M. et al. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2011. – Vol. 52, № 2. – P. 1098-1102.

33. Song A.P., Wu X.Y., Wang J.R. et al. Measurement of retinal thickness in macular region of high myopic eyes using spectral domain OCT // Int. J. Ophthalmol. – 2014. – Vol. 7, № 1. – P. 122-127.

34. Spaide R.F., Ohno-Matsui K., Yannuzzi L.A. (eds.) Pathologic Myopia. – New York etc.: Springer, 2014. – 376 p.

35. Spectralis HRA+OCT: User manual; software version 5.7. – Heidelberg Engineering GmbH, 2013.

36. Taş M., Oner V., Türkcü F.M. et al. Peripapillary retinal nerve fiber layer thickness in hyperopic children // Optom. Vis. Sci. – 2012. – Vol. 89, № 7. – P. 1009-1013.

37. Topcon 3D OCT Series Normative Database. – Topcon Medical Systems, Inc., 2011. – 8 p.

38. Wang X.E., Wang X.Y., Gu Y.S., Huang Z. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry // Chin. Med. J. (Engl.). – 2013. – Vol. 126, № 8. – P. 1425-1429.

39. Williams K.M., Verhoeven V.J., Cumberland P. et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E³) Consortium // Eur. J. Epidemiol. – 2015. – Vol. 30, № 4. – P. 305-315.

40. Yanni S.E., Wang J., Cheng C.S. et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children // Am. J. Ophthalmol. – 2013. – Vol. 155, № 2. – 354-360.e1.

41. Yoo Y.C., Lee C.M., Park J.H. Changes in peripapillary retinal nerve fiber layer distribution by axial length // Optom. Vis. Sci. – 2012. – Vol. 89, № 1. – P. 4-11.

42. Yuan Y.Z., Feng C.L., Li B.Y. et al. The relationship between visual field global indices and retinal nerve fiber layer thickness in healthy myopes // J. Ophthalmol. – 2014. – Vol. 2014. – Article ID 431901. – 8 p.

43. Zhang Y., Wen W., Sun X. Comparison of several parameters in two optical coherence tomography systems for detecting glaucomatous defects in high myopia // Invest. Ophthalmol. Vis. Sci. – 2016. – Vol. 57, № 11. – P.4910-4915.

44. Zhu B.D., Li S.M., Li H. et al. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: the Anyang Childhood Eye Study // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 13. – P. 8104-8111.

Fyodorov Journal of Ophthalmic Surgery. 2017; : 87-91

NORMATIVE DATABASES FOR OPTICAL COHERENCE TOMOGRAPHY (LITERATURE REVIEW)

Shpak A. A., Korobkova M. V., Balasanyan V. O.

https://doi.org/10.25276/0235-4160-2017-4-87-91

Abstract

An analysis of the quantitative results of optical coherence tomography (OCT) includes a comparison with normative databases. In their structure, the existing databases of the OCT devices do not have major differences. Most of them are diversified (include persons of different ethnic origin) and have significant limitations on age and refractive error (the length of the eye), what adversely affects the diagnostic power of the OCT, particularly in individuals with extreme values of these parameters. Databases are proposed or are in development for children and people older than 80 years, but such databases are not included in the OCT software yet. A proper evaluation of the results in patients with highdegree refractive errors is only possible using specialized databases. Long Axial Length Normative Database for Nidek RS series devices can serve as an example, but it is limited to the representatives of the Asian race. It is very important to develop similar databases for all ethnic groups of the population (or diversified) for this and other OCT devices. The methods were developed for correction of the magnification effect of the optical system of the eyes with refractive errors. These methods have limited value and could be applied to few parameters measured by OCT.

References

1. Belogurova A.V. Differentsial'no-diagnosticheskie kriterii i monitoring glaukomnogo protsessa pri osevoi miopii: Avtoref. dis. … kand. med. nauk. – M., 2016. – 22 s.

2. Kazakova A.V., Eskina E.N. Diagnostika glaukomy u patsientov s blizorukost'yu // Natsional'nyi zhurnal Glaukoma. – 2015. – T. 14, № 3. – S. 87-100.

3. Ekgardt V.F., Dorofeev D.A., Shaimov T.B., Deev R.V. O razmerakh diska zritel'nogo nerva // Kazanskii meditsinskii zhurnal. – 2013. – T. 94, № 6. – S. 850-853.

4. Efendieva M.E. Sravnitel'naya otsenka tolshchiny sloya nervnykh volokon setchatki u patsientov s miopiei raznoi stepeni // Vestn. oftal'mol. – 2014. – № 4. – S. 18-21.

5. Akashi A., Kanamori A., Ueda K. et al. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls // Invest. Ophthalmol. Vis. Sci. – 2015. – Vol. 56, № 11. – P. 6573-6580.

6. Al-Haddad C., Barikian A., Jaroudi M. et al. Spectral domain optical coherence tomography in children: normative data and biometric correlations // BMC Ophthalmol. – 2014. – Vol. 14, № 53. – 8 p.

7. Appukuttan B., Giridhar A., Gopalakrishnan M., Sivaprasad S. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians // Indian J. Ophthalmol. – 2014. – Vol. 62, № 3. – P. 316-321.

8. Barrio-Barrio J., Noval S., Galdós M. et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children // Acta Ophthalmol. – 2013. – Vol. 91, № 1. – P. e56-e63.

9. Bennett A.G., Rudnicka A.R., Edgar D.F. Improvements on Littmann’s method of determining the size of retinal features by fundus photography // Graefes Arch. Clin. Exp. Ophthalmol. – 1994. – Vol. 232, № 6. – P. 361-367.

10. Biswas S., Lin C., Leung C.K. Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness // JAMA Ophthalmol. – Vol. 134, № 9. – P. 1032-1039.

11. Choi S.W., Lee S.J. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia // Korean J. Ophthalmol. – 2006. – Vol. 20, № 4. – P. 215-219.

12. Choi Y.J., Jeoung J.W., Park K.H., Kim D.M. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 3. – P. 2296-2304.

13. Cirrus HD-OCT User Manual – Models 500, 5000. Carl Zeiss Meditec, Inc., 2015.

14. Garway-Heath D.F., Rudnicka A.R., Lowe T. et al. Measurement of optic disc size: equivalence of methods to correct for ocular magnification // Br. J. Ophthalmol. – 1998. – Vol. 82, № 6. – P. 643-649.

15. Gürağaç F.B., Totan Y., Güler E. et al. Normative spectral domain optical coherence tomography data in healthy turkish children // Semin. Ophthalmol. – 2017. – Vol. 32, № 2. – P. 216-222.

16. Hong S.W., Ahn M.D., Kang S.H., Im S.K. Analysis of peripapillary retinal nerve fiber distribution in normal young adults // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 7. – P. 3515-3523.

17. Huang D., Chopra V., Lu A.T. et al. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? // Invest. Ophthalmol. Vis. Sci. – 2012. – Vol. 53, № 8. – P. 4990-4997.

18. Kim N.R., Lee E.S., Seong G.J. et al. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia // Br. J. Ophthalmol. – 2011. – Vol. 95, № 8. – P. 1115-1121.

19. Knight O.J., Girkin C.A., Budenz D.L. et al. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT // Arch. Ophthalmol. – 2012. – Vol. 130, № 3. – P. 312-318.

20. Littmann H. Zur Bestimmung der wahren Grosse eines Objektes auf dem Hintergrund des lebenden Auges // Klin. Monatsbl. Augenheilkd. – 1982. – Bd. 180, № 4. – S. 286-289.

21. Mohammad Salih P.A. Evaluation of peripapillary retinal nerve fiber layer thickness in myopic eyes by spectral-domain optical coherence tomography // J. Glaucoma. – 2012. – Vol. 21, № 1. – P. 41-44.

22. Nakanishi H., Akagi T., Hangai M. et al. Sensitivity and specificity for detecting early glaucoma in eyes with high myopia from normative database of macular ganglion cell complex thickness obtained from normal non-myopic or highly myopic Asian eyes // Graefes Arch. Clin. Exp. Ophthalmol. – 2015. – Vol. 253, № 7. – P. 1143-1152.

23. Natung T., Keditsu A., Lyngdoh L.A. et al. Normal macular thickness in healthy indian eyes using spectral domain optical coherence tomography // Asia Pac. J. Ophthalmol. (Phila). – 2016. – Vol. 5, № 3. – P. 176-179.

24. Nidek Co., Ltd. Software for RS series Long Axial Length Normative Database. – Http://www.nidek-intl. com/product/ophthaloptom/diagnostic/dia_retina/ longaxiallength.html.

25. Optical coherence tomography OCT-HS100: Operation manual; software version 3.0. – Canon, 2013.

26. Rao A. Sahoo B., Kumar M. et al. Retinal nerve fiber layer thickness in children <18 years by spectraldomain optical coherence tomography // Semin Ophthalmol. – 2013. – Vol. 28, № 2. – P. 97-102.

27. Realini T., Zangwill L.M., Flanagan J.G. et al. Normative databases for imaging instrumentation // J. Glaucoma. – 2015. – Vol. 24, № 6. – P. 480-483.

28. Röck T., Wilhelm B., Bartz-Schmidt K.U., Röck D. The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study // Graefes Arch. Clin. Exp. Ophthalmol. – 2014. – Vol. 252, № 4. – P. 589-593.

29. Rougier M.B., Korobelnik J.F., Malet F. et al. Retinal nerve fibre layer thickness measured with SDOCT in a population-based study of French elderly subjects: the Alienor study // Acta Ophthalmol. – 2015. – Vol. 93, № 6. – P. 539-545.

30. RTVue XR 100 Avanty edition: User’s manual; software version 2014.1. – Optovue Inc., 2014. – 43 p.

31. Savini G., Barboni P., Parisi V., Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectraldomain OCT // Br. J. Ophthalmol. – 2012. – Vol. 96, № 1. – P. 57-61.

32. Shoji T., Sato H., Ishida M. et al. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2011. – Vol. 52, № 2. – P. 1098-1102.

33. Song A.P., Wu X.Y., Wang J.R. et al. Measurement of retinal thickness in macular region of high myopic eyes using spectral domain OCT // Int. J. Ophthalmol. – 2014. – Vol. 7, № 1. – P. 122-127.

34. Spaide R.F., Ohno-Matsui K., Yannuzzi L.A. (eds.) Pathologic Myopia. – New York etc.: Springer, 2014. – 376 p.

35. Spectralis HRA+OCT: User manual; software version 5.7. – Heidelberg Engineering GmbH, 2013.

36. Taş M., Oner V., Türkcü F.M. et al. Peripapillary retinal nerve fiber layer thickness in hyperopic children // Optom. Vis. Sci. – 2012. – Vol. 89, № 7. – P. 1009-1013.

37. Topcon 3D OCT Series Normative Database. – Topcon Medical Systems, Inc., 2011. – 8 p.

38. Wang X.E., Wang X.Y., Gu Y.S., Huang Z. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry // Chin. Med. J. (Engl.). – 2013. – Vol. 126, № 8. – P. 1425-1429.

39. Williams K.M., Verhoeven V.J., Cumberland P. et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E³) Consortium // Eur. J. Epidemiol. – 2015. – Vol. 30, № 4. – P. 305-315.

40. Yanni S.E., Wang J., Cheng C.S. et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children // Am. J. Ophthalmol. – 2013. – Vol. 155, № 2. – 354-360.e1.

41. Yoo Y.C., Lee C.M., Park J.H. Changes in peripapillary retinal nerve fiber layer distribution by axial length // Optom. Vis. Sci. – 2012. – Vol. 89, № 1. – P. 4-11.

42. Yuan Y.Z., Feng C.L., Li B.Y. et al. The relationship between visual field global indices and retinal nerve fiber layer thickness in healthy myopes // J. Ophthalmol. – 2014. – Vol. 2014. – Article ID 431901. – 8 p.

43. Zhang Y., Wen W., Sun X. Comparison of several parameters in two optical coherence tomography systems for detecting glaucomatous defects in high myopia // Invest. Ophthalmol. Vis. Sci. – 2016. – Vol. 57, № 11. – P.4910-4915.

44. Zhu B.D., Li S.M., Li H. et al. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: the Anyang Childhood Eye Study // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 13. – P. 8104-8111.