Журналов:     Статей:        

Офтальмохирургия. 2017; : 67-72

ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ У ПАЦИЕНТОВ С АНОМАЛИЯМИ РЕФРАКЦИИ. Сообщение 1: Толщина перипапиллярного слоя нервных волокон сетчатки

Шпак А. А., Коробкова М. В.

https://doi.org/10.25276/0235-4160-2017-4-67-72

Аннотация

Цель. Разработка доступного способа коррекции влияния оптической системы длинных или коротких глаз на параметры перипапиллярного слоя нервных волокон сетчатки (пСНВС), измеряемого методом оптической когерентной томографии (ОКТ).

Материал и методы. Обследовано 46 пациентов (46 глаз) в возрасте от 18 до 40 лет с миопией средней и высокой степени, имеющих остроту зрения с коррекцией не ниже 0,8, а также 53 здоровых человека с эмметропией, аналогичного пола и возраста (группа сравнения), и 117 здоровых эмметропов 41-84 лет (группа «старше 40 лет»). ОКТ выполняли на приборе Cirrus HD-OCT (Carl Zeiss Meditec). Проведен анализ литературы для подбора оптимального способа коррекции влияния оптической системы глаза на параметры пСНВС.

Результаты. С учетом данных литературы для коррекции влияния оптической системы глаза на параметры пСНВС был избран метод Littmann (1982) в модификации Bennett et al. (1994). Метод был модифицирован применительно к эмметропическому глазу длиной 23,5 мм. Определены нормативы пСНВС для таких глаз. Несмотря на высокую остроту зрения пациенты с близорукостью демонстрировали достоверное снижение толщины пСНВС (83,9±5,4 µм) относительно группы сравнения (96,1±8,2 µм, P<0,000) и корреляцию толщины пСНВС с длиной оси глаза (r=-0,394; P=0,007). После коррекции по модифицированному методу средняя толщина пСНВС (96,0±5,8 µм) не отличалась от нормы и отсутствовала корреляция с длиной оси глаза. Разработана таблица, позволяющая корректировать толщину пСНВС с учетом длины оси глаза.

Заключение. Приборы для ОКТ большинства производителей не учитывают влияния аномалий рефракции, особенно высокой степени, на количественные измерения структур глазного дна. Для правильной интерпретации измерений пСНВС у таких пациентов усовершенствованы существующие способы расчетов и предложена оригинальная таблица, обеспечивающая быструю оценку полученных результатов.

Список литературы

1. Белогурова А.В. Дифференциально-диагностические критерии и мониторинг глаукомного процесса при осевой миопии: Автореф. дис. … канд. мед. наук. – М., 2016. – 22 с.

2. Казакова А.В., Эскина Э.Н. Диагностика глаукомы у пациентов с близорукостью // Национальный журнал Глаукома. – 2015. – Т. 14, № 3. – С. 87-100.

3. Пилягина А.А. Возможности различных методов биометрии в оценке аксиальной длины глаза // Вестник Оренбургского государственного университета. – 2015. – № 12 (187). – С. 181-184.

4. Шпак А.А., Коробкова М.В., Баласанян В.О. Нормативные базы данных приборов для оптической когерентной томографии (обзор литературы) // Офтальмохирургия. – 2017. – № 4. – С. 87-91.

5. Эфендиева М.Э. Сравнительная оценка толщины слоя нервных волокон сетчатки у пациентов с миопией разной степени // Вестн. офтальмол. – 2014. – № 4. – С. 18-21.

6. Akashi A., Kanamori A., Ueda K. et al. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls // Invest. Ophthalmol. Vis. Sci. – 2015. – Vol. 56, № 11. – P. 6573-6580.

7. Atchison D., Smith G. Optics of the human eye. Oxford: Butterworth-Heinemann, 2000. – P. 64.

8. Bennett A.G., Rudnicka A.R., Edgar D.F. Improvements on Littmann’s method of determining the size of retinal features by fundus photography // Graefes Arch. Clin. Exp. Ophthalmol. – 1994. – Vol. 232, № 6. – P. 361-367.

9. Celebi A.R., Mirza G.E. Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 13. – P. 8095-8103.

10. Eysteinsson T., Jonasson F., Arnarsson A. et al. Relationships between ocular dimensions and adult stature among participants in the Reykjavik Eye Study // Acta Ophthalmol. Scand. – 2005. – Vol. 83, № 6. – P. 734-738.

11. Feuer W.J., Budenz D.L., Anderson D.R. et al. Topographic differences in the age-related changes in the retinal nerve fiber layer of normal eyes measured by Stratus optical coherence tomography // J. Glaucoma. – 2011. – Vol. 20, № 3. – P. 133-138.

12. Findl O., Kriechbaum K., Sacu S. et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery // J. Cataract Refract. Surg. – 2003. – Vol. 29, № 10. – P. 1950-1955.

13. Foster P.J., Broadway D.C., Hayat S. et al. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study // Br. J. Ophthalmol. – 2010. – Vol. 94, № 7. – P. 827-830.

14. Fotedar R., Wang J.J., Burlutsky G. et al. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population // Ophthalmology. – 2010. – Vol. 117, № 3. – P. 417-423.

15. Garway-Heath D.F., Rudnicka A.R., Lowe T. et al. Measurement of optic disc size: equivalence of methods to correct for ocular magnification // Br. J. Ophthalmol. – 1998. – Vol. 82, № 6. – P. 643-649.

16. Hirasawa K., Shoji N., Yoshii Y., Haraguchi S. Determination of axial length requiring adjustment of measured circumpapillary retinal nerve fiber layer thickness for ocular magnification // PLoS One. – 2014. – Vol. 9, № 9. – E107553.

17. Hong S.W., Ahn M.D., Kang S.H., Im S.K. Analysis of peripapillary retinal nerve fiber distribution in normal young adults // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 7. – P. 3515-3523.

18. Huang D., Chopra V., Lu A.T. et al. Advanced Imaging for Glaucoma Study-AIGS Group. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? // Invest. Ophthalmol. Vis Sci. – 2012. – Vol. 5, № 8. – P. 4990-4997.

19. Jivrajka R., Shammas M.C., Boenzi T. et al. Variability of axial length, anterior chamber depth, and lens thickness in the cataractous eye // J. Cataract Refract. Surg. – 2008. – Vol. 34, № 2. – P. 289-294.

20. Kang S.H., Hong S.W., Im S.K. et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 8. – P. 4075-4083.

21. Leung C.K., Cheng A.C., Chong K.K. et al. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy // Invest. Ophthalmol. Vis. Sci. – 2007. – Vol. 48, № 7. – P. 3178-3183.

22. Littmann H. Zur Bestimmung der wahren Grosse eines Objektes auf dem Hintergrund des lebenden Auges // Klin. Monatsbl. Augenheilkd. – 1982. – Bd. 180, № 4. – S. 286-289.

23. Öner V., Aykut V., Taş M. et al. Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography // Br. J. Ophthalmol. – 2013. – Vol. 97, № 1. – P. 75-79.

24. Savini G., Barboni P., Parisi V., Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectraldomain OCT // Br. J. Ophthalmol. – 2012. – Vol. 96, № 1. – P. 57-61.

25. Shufelt C., Fraser-Bell S., Ying-Lai M. et al. Refractive error, ocular biometry, and lens opalescence in an adult population: the Los Angeles Latino Eye Study // Invest. Ophthalmol. Vis. Sci. – 2005. – Vol. 46, № 12. – P. 4450-4460.

26. Taş M., Öner V., Türkcü F.M. et al. Peripapillary retinal nerve fiber layer thickness in hyperopic children // Optom. Vis. Sci. – 2012. – Vol. 89, № 7. – P. 1009-1013.

27. Tsai D.C., Huang N., Hwu J.J. et al. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography // Jpn. J. Ophthalmol. – 2012. – Vol. 56, № 4. – P. 362-370.

28. Yang B., Ye C., Yu M. et al. Optic disc imaging with spectral-domain optical coherence tomography: variability and agreement study with Heidelberg retinal tomograph // Ophthalmology. – 2012. – Vol. 119, № 9. – P. 1852-1857.

29. Yanoff M., Duker J.S. Ophthalmology. 4th ed. – Philadelphia, PA: Saunders Elsevier, 2014. – P. 337.

30. Yoo Y.C., Lee C.M., Park J.H. Changes in peripapillary retinal nerve fiber layer distribution by axial length // Optom. Vis. Sci. – 2012. – Vol. 89, № 1. – P. 4-11.

31. Yuan Y.Z., Feng C.L., Li B.Y. et al. The relationship between visual field global indices and retinal nerve fiber layer thickness in healthy myopes // J. Ophthalmol. – 2014. – Vol. 2014. – Article ID 431901. – 8 p.

Fyodorov Journal of Ophthalmic Surgery. 2017; : 67-72

OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH REFRACTIVE ERRORS. Part 1: The thickness of the peripapillary retinal nerve fiber layer

Shpak A. A., Korobkova M. V.

https://doi.org/10.25276/0235-4160-2017-4-67-72

Abstract

Purpose. To develop an available method to correct the influence of the optical system of long or short eyes on the thickness of peripapillary retinal nerve fiber layer (pRNFL), measured using the optical coherence tomography (OCT).

Material and methods. The study involved 46 patients (46 eyes) aged 18 to 40 years, with moderate and high myopia and the best corrected visual acuity (BCVA) not lower than 0.8, as well as 53 healthy persons with emmetropia of the same sex and age (comparative group) and 117 healthy emmetropic individuals aged 41-84 years (group «over 40 years old»). The OCT was performed using a Cirrus HD-OCT device (Carl Zeiss Meditec). An analysis of the literature was conducted for the selection of the optimal method to correct the influence of the eye optical system on the pRNFL parameters.

Results. Taking into account the literature data, Littmann’s method (1982), modified by Bennett et al. (1994), was chosen for a correction of the influence of the ocular optical system on the pRNFL. The method was modified and adopted to the emmetropic eye with a 23.5 mm axial length. The pRNFL normative data were defined for such eyes. Despite the high visual acuity, the patients with myopia showed a significant decrease in the thickness of pRNFL (83.9±5.4 µm) compared to the healthy individuals (96.1±8.2 µm, P<0.000) and the correlation of the pRNFL thickness with the axial length of the eye (r=-0.394; P=0.007).

After the correction by the suggested modified method, the average RNFL thickness (96.0±5.8 µm) did not differ from the healthy individuals, and there was no correlation with the axial length of the eye. A table was developed that allows to correct the pRNFL thickness taking into account the axial length of the eye.

Conclusion. The OCT devices of most manufacturers do not consider the effect of refractive errors, especially in case of high degree, on quantitative measurements of structures of the eye fundus. For a correct interpretation of pRNFL measurements in these patients, the existing methods of calculation were improved and an original table was proposed, which provides a quick assessment of the obtained results.

References

1. Belogurova A.V. Differentsial'no-diagnosticheskie kriterii i monitoring glaukomnogo protsessa pri osevoi miopii: Avtoref. dis. … kand. med. nauk. – M., 2016. – 22 s.

2. Kazakova A.V., Eskina E.N. Diagnostika glaukomy u patsientov s blizorukost'yu // Natsional'nyi zhurnal Glaukoma. – 2015. – T. 14, № 3. – S. 87-100.

3. Pilyagina A.A. Vozmozhnosti razlichnykh metodov biometrii v otsenke aksial'noi dliny glaza // Vestnik Orenburgskogo gosudarstvennogo universiteta. – 2015. – № 12 (187). – S. 181-184.

4. Shpak A.A., Korobkova M.V., Balasanyan V.O. Normativnye bazy dannykh priborov dlya opticheskoi kogerentnoi tomografii (obzor literatury) // Oftal'mokhirurgiya. – 2017. – № 4. – S. 87-91.

5. Efendieva M.E. Sravnitel'naya otsenka tolshchiny sloya nervnykh volokon setchatki u patsientov s miopiei raznoi stepeni // Vestn. oftal'mol. – 2014. – № 4. – S. 18-21.

6. Akashi A., Kanamori A., Ueda K. et al. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls // Invest. Ophthalmol. Vis. Sci. – 2015. – Vol. 56, № 11. – P. 6573-6580.

7. Atchison D., Smith G. Optics of the human eye. Oxford: Butterworth-Heinemann, 2000. – P. 64.

8. Bennett A.G., Rudnicka A.R., Edgar D.F. Improvements on Littmann’s method of determining the size of retinal features by fundus photography // Graefes Arch. Clin. Exp. Ophthalmol. – 1994. – Vol. 232, № 6. – P. 361-367.

9. Celebi A.R., Mirza G.E. Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2013. – Vol. 54, № 13. – P. 8095-8103.

10. Eysteinsson T., Jonasson F., Arnarsson A. et al. Relationships between ocular dimensions and adult stature among participants in the Reykjavik Eye Study // Acta Ophthalmol. Scand. – 2005. – Vol. 83, № 6. – P. 734-738.

11. Feuer W.J., Budenz D.L., Anderson D.R. et al. Topographic differences in the age-related changes in the retinal nerve fiber layer of normal eyes measured by Stratus optical coherence tomography // J. Glaucoma. – 2011. – Vol. 20, № 3. – P. 133-138.

12. Findl O., Kriechbaum K., Sacu S. et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery // J. Cataract Refract. Surg. – 2003. – Vol. 29, № 10. – P. 1950-1955.

13. Foster P.J., Broadway D.C., Hayat S. et al. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study // Br. J. Ophthalmol. – 2010. – Vol. 94, № 7. – P. 827-830.

14. Fotedar R., Wang J.J., Burlutsky G. et al. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population // Ophthalmology. – 2010. – Vol. 117, № 3. – P. 417-423.

15. Garway-Heath D.F., Rudnicka A.R., Lowe T. et al. Measurement of optic disc size: equivalence of methods to correct for ocular magnification // Br. J. Ophthalmol. – 1998. – Vol. 82, № 6. – P. 643-649.

16. Hirasawa K., Shoji N., Yoshii Y., Haraguchi S. Determination of axial length requiring adjustment of measured circumpapillary retinal nerve fiber layer thickness for ocular magnification // PLoS One. – 2014. – Vol. 9, № 9. – E107553.

17. Hong S.W., Ahn M.D., Kang S.H., Im S.K. Analysis of peripapillary retinal nerve fiber distribution in normal young adults // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 7. – P. 3515-3523.

18. Huang D., Chopra V., Lu A.T. et al. Advanced Imaging for Glaucoma Study-AIGS Group. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? // Invest. Ophthalmol. Vis Sci. – 2012. – Vol. 5, № 8. – P. 4990-4997.

19. Jivrajka R., Shammas M.C., Boenzi T. et al. Variability of axial length, anterior chamber depth, and lens thickness in the cataractous eye // J. Cataract Refract. Surg. – 2008. – Vol. 34, № 2. – P. 289-294.

20. Kang S.H., Hong S.W., Im S.K. et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography // Invest. Ophthalmol. Vis. Sci. – 2010. – Vol. 51, № 8. – P. 4075-4083.

21. Leung C.K., Cheng A.C., Chong K.K. et al. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy // Invest. Ophthalmol. Vis. Sci. – 2007. – Vol. 48, № 7. – P. 3178-3183.

22. Littmann H. Zur Bestimmung der wahren Grosse eines Objektes auf dem Hintergrund des lebenden Auges // Klin. Monatsbl. Augenheilkd. – 1982. – Bd. 180, № 4. – S. 286-289.

23. Öner V., Aykut V., Taş M. et al. Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography // Br. J. Ophthalmol. – 2013. – Vol. 97, № 1. – P. 75-79.

24. Savini G., Barboni P., Parisi V., Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectraldomain OCT // Br. J. Ophthalmol. – 2012. – Vol. 96, № 1. – P. 57-61.

25. Shufelt C., Fraser-Bell S., Ying-Lai M. et al. Refractive error, ocular biometry, and lens opalescence in an adult population: the Los Angeles Latino Eye Study // Invest. Ophthalmol. Vis. Sci. – 2005. – Vol. 46, № 12. – P. 4450-4460.

26. Taş M., Öner V., Türkcü F.M. et al. Peripapillary retinal nerve fiber layer thickness in hyperopic children // Optom. Vis. Sci. – 2012. – Vol. 89, № 7. – P. 1009-1013.

27. Tsai D.C., Huang N., Hwu J.J. et al. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography // Jpn. J. Ophthalmol. – 2012. – Vol. 56, № 4. – P. 362-370.

28. Yang B., Ye C., Yu M. et al. Optic disc imaging with spectral-domain optical coherence tomography: variability and agreement study with Heidelberg retinal tomograph // Ophthalmology. – 2012. – Vol. 119, № 9. – P. 1852-1857.

29. Yanoff M., Duker J.S. Ophthalmology. 4th ed. – Philadelphia, PA: Saunders Elsevier, 2014. – P. 337.

30. Yoo Y.C., Lee C.M., Park J.H. Changes in peripapillary retinal nerve fiber layer distribution by axial length // Optom. Vis. Sci. – 2012. – Vol. 89, № 1. – P. 4-11.

31. Yuan Y.Z., Feng C.L., Li B.Y. et al. The relationship between visual field global indices and retinal nerve fiber layer thickness in healthy myopes // J. Ophthalmol. – 2014. – Vol. 2014. – Article ID 431901. – 8 p.