Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 104-112

Аллергенсодержащие вакцины для специфической иммунотерапии

Петрова С. Ю., Хлгатян С. В., Бержец В. М., Васильева А. В.

https://doi.org/10.36233/0372-9311-11

Аннотация

Аллергенспецифическую иммунотерапию (АСИТ) используют более 100 лет для лечения пациентов с IgE-опосредованными аллергическими заболеваниями. В последние два десятилетия наиболее распространённые лечебные аллергены были получены с помощью технологии молекулярного клонирования. Для повышения безопасности иммунотерапии создана большая группа генетически модифицированных аллергенов со сниженной аллергенной активностью. Механизм действия данных лечебных аллергенов отличается от такового природных экстрактов аллергенов, и необходимы дополнительные исследования, чтобы понять, как происходит десенсибилизация в каждом случае.
Целью обзора является ознакомление читателей с новыми лечебными аллергенсодержащими вакцинами, особенностями их структурной модификации и иммунологическим воздействием на организм.
Мы провели анализ и систематизацию представленных в литературе экспериментальных разработок по основным направлениям создания новых вакцин от аллергии: гипоаллергенных производных рекомбинантных аллергенов, вакцин, содержащих антигены с Т-эпитопами, и вакцин, содержащих антигены с В-эпитопами, ДНК-вакцин. Нам удалось выявить сильные и слабые стороны основных направлений модификации рекомбинантных аллергенов. Все представленные в обзоре аллергенсодержащие вакцины решают поставленные исследователями задачи: в экспериментальных моделях на животных они формируют иммуногенность или толерантность, в клинических испытаниях снижают симптомы аллергических реакций. Оценка эффективности предлагаемых вакцин довольно высока, но требуются их дальнейшие доклинические и клинические испытания для подтверждения безопасности и безвредности.

Список литературы

1. Петрова С.Ю., Хлгатян С.В., Бержец В.М., Радикова О.В. Современная концепция патогенеза атопических заболеваний. Иммунопатология, аллергология, инфектология. 2019;n(1): 72–9. https://doi.org/10.14427/jipai.2019.1.72

2. Петрова С.Ю., Бержец В.М., Петрова Н.С., Хрулёва В.А., Емельянов О.Ю., Хлгатян С.В. и др. Перспективы развития лечебных форм аллергенов. От абстрактных проблем к конкретным решениям. Иммунопатология, аллергология, инфектология. 2018; (1): 40–7. https://doi.org/10.14427/jipai.2018.1.40

3. Calderon M.A., Casale T.B., Togias A., Bousquet J., Durham S.R., Demoly P. Allergen-specific immunotherapy for respiratory allergies: from meta-analysis to regulation and beyond. J. Allergy Clin. Immunol. 2011; 127(4): 30–8. https://doi.org/10.1016/j.jaci.2010.08.024

4. Meadows A., Kaambwa B., Novielli N., Huissoon A., FrySmith A., Meads C., et al. A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis. Health Technol. Assess. 2013; 17(27): 1–322. https://doi.org/10.3310/hta17270

5. Lockey R.F. "ARIA": global guidelines and new forms of allergen immunotherapy. J. Allergy Clin. Immunol. 2001; 108(4): 497–9. https://doi.org/10.1067/mai.2001.118638

6. Бержец В.М., Бабахин А.А., Петрова Н.С., Васильева А.В., Хлгатян С.В., Емельянова О.Ю. Новые формы клещевых аллергоидов. Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; 96(3): 15–21. https://doi.org/10.36233/0372-9311-2019-3-15-21

7. Данилычева И.В., Ильина Н.И., Шульженко А.Е. Опыт применения карбамилированного мономерного аллергоида Lais ® для сублингвальной иммунотерапии пациентов с аллергическим риноконъюнктивитом, вызванным пыльцой злаковых трав. Российский аллергологический журнал. 2013; (6): 58–63.

8. Петров Р.В., Хаитов Р.М., Некрасов А.В., Федосеева В.Н., Пучкова Н.Г., Камышева В.А. и др. Аллерготропин для лечения поллинозов и способ лечения поллинозов. Патент РФ №2205661; 2001.

9. Nguyen N.T., Raskopf E., Shah-Hosseini K., Zadoyan G., Mösges R. A review of allergoid immunotherapy: is cat allergy a suitable target? Immunotherapy. 2016; 8(3): 331–49. https://doi.org/10.2217/imt.15.121

10. Makatsori M., Pfaar O., Lleonart R., Calderon M.A. Recombinant allergen immunotherapy: clinical evidence of efficacy a review. Curr. Allergy Asthma Rep. 2013; 13(4): 371–80. https://doi.org/10.1007/s11882-013-0359-7

11. Valenta R., Niespodziana K., Focke-Tejkl M., Marth K., Huber H., Neubauer A. Recombinant allergens: What does the future hold? J. Allergy Clin. Immunol. 2011; 127(4): 860–4. https://doi.org/10.1016/j.jaci.2011.02.016

12. Valenta R., Linhart B., Swoboda I., Niederberger V. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy. 2011; 66(6): 775–83. https://doi.org/10.1111/j.1398-9995.2011.02565.x.

13. Linhart B., Valenta R. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives. Vaccine. 2012; 30(29): 4328–35. https://doi.org/10.1016/j.vaccine.2011.11.011

14. Chen K.W., Blatt K., Thomas W.R., Swoboda I., Valent P., Valenta R., et al. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J. Allergy Clin. Immunol. 2012; 130(2): 435–43. https://doi.org/10.1016/j.jaci.2012.05.035

15. Valenta R., Ferreira F., Focke-Tejkl M., Marth K., Huber H., Neubauer A., et al. From allergen genes to allergy vaccines. Annu. Rev. Immunol. 2010; 28: 211–41. https://doi.org/10.1016/j.jaci.2011.02.016

16. Valenta R. The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol. 2002; 2(6): 446–53. https://doi.org/10.1038/nri824

17. Свирщевская Е.В., Алексеева Л.Г. Гетерологичный пептидный мини антиген в составе полимерной частицы для создания противоаллергенной вакцины. Патент РФ № 2480479; 2013.

18. Marth K., Focke-Tejkl M., Lupinek Ch., Valenta R., Niederberger V. Allergen peptides, recombinant allergens and hypoallergens for allergen-specific immunotherapy. Curr. Treat. Options Allergy. 2014; 1(1): 91–106. https://doi.org/10.1007/s40521-013-0006-5

19. Sircar G., Jana K., Dasgupta A., Saha S., Gupta Bhattacharya S. Epitope mapping of Rhi o 1 and generation of a hypoallergenic variant: a candidate molecule for fungal allergy vaccines. J Biol. Chem. 2016; 291(34): 18016–29. https://doi.org/10.1074/jbc.M116.732032

20. Martínez D., Munera M., Cantillo J.F., Wortmann J., Zakzuk J., Keller W., et al. An engineered hybrid protein from Dermatophagoides pteronyssinus allergens shows hypoallergenicity. J. Mol. Sci. 2019; 20(12): 3025. https://doi.org/10.3390/ijms20123025

21. Sanchez-Trincado J.L., Gomez-Perosanz М., Reche Р.А. Fundamentals and methods for T- and B-cell epitope prediction. J. Immunol. Res. 2017; 2017: 2680160. https://doi.org/10.1155/2017/2680160

22. Woodfolk J.A. T-cell responses to allergens. J. Allergy Clin. Immunol. 2007; 119(2): 280–94. https://doi.org/10.1016/j.jaci.2006.11.008

23. Worm M., Lee H.H., Kleine-Tebbe J., Hafner R.P., Laidler P., Healey D., et al. Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J. Allergy Clin. Immunol. 2011; 127(1): 89–97. https://doi.org/10.1016/j.jaci.2010.11.029

24. Greenbaum J., Sidney J., Chung J., Brander C., Peters B., Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics. 2011; 63(6): 325–35. https://doi.org/10.1007/s00251-011-0513-0

25. Patel D., Couroux P., Hickey P., Salapatek A.M., Laidler P., Larché M., et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2013; 131(1): 103–9. https://doi.org/10.1016/j.jaci.2012.07.028

26. Sancho A.I., Wallner M., Hauser M., Nagl B., Himly M., Asam C., et al. T cell epitope containing domains of ragweed Amb a 1 and mugwort Art v 6 modulate immunologic responses in humans and mice. PLoS One. 2017; 12(1): e0169784. https://doi.org/10.1371/journal.pone.0169784

27. Tonti E., Larch M. Concepts and perspectives on peptide-based immunotherapy in allergy. Allergo J. Int. 2016; 25(6): 144–53. https://doi.org/10.1007/s40629-016-0126-0

28. Pellaton C., Perrin Y., Boudousquie C., Barbier N., Wassenberg J., Corradin G., et al. Novel birch pollen specific immunotherapy formulation based on contiguous overlapping peptides. Clin. Transl. Allergy. 2013; 3(1): 17. https://doi.org/10.1186/2045-7022-3-17

29. Akdis М. New treatments for allergen immunotherapy. World Allergy Organ. J. 2014; 7(1): 23. https://doi.org/10.1186/1939-4551-7-23

30. Hafner1 R.P., Couroux P., Salapatek A., Hickey P., Laidler P., Larché M., et al. Immunotherapy – 2080 Fel d 1 derived peptide antigen desensitization results in a persistent treatment effect on symptoms of cat allergy 1 year after 4 doses. World Allergy Organ. Journal. 2013; 6(1): 162. https://doi.org/10.1186/1939-4551-6-S1-P162

31. Cox L., Compalati E., Kundig T., Larche M. New directions in immunotherapy. Curr. Allergy Asthma Rep. 2013; 13(2): 178–95. https://doi.org/10.1007/s11882-012-0335-7

32. Calzada D., Cremades-Jimeno L., Pedro M.Á., Baos S., Rial M., Sastre J., et al. Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy. Sci. Rep. 2019; 9(1): 15942. https://doi.org/10.1038/s41598-019-52286-3

33. Focke-Tejkl M., Weber M., Niespodziana K., Neubauer A., Huber H., Henning R., et al. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J. Allergy Clin. Immunol. 2015; 130(5): 1207-7. e1-11. https://doi.org/10.1016/j.jaci.2014.09.012

34. Twaroch T.E., Focke M., Fleischmann K., Balic N., Lupinek C., Blatt K., et al. Carrier-bound Alt a 1 peptides without allergenic activity fo vaccination against Alternaria alternata allergy. Clin. Exp. Allergy. 2012; 42(6): 966–75. https://doi.org/10.1111/j.1365-2222.2012.03996

35. Edlmayr J., Niespodziana K., Focke-Tejkl M., Linhart B., Valenta R. Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases. Curr. Top. Microbiol. Immunol. 2011; 352: 121–40. https://doi.org/10.1007/82_2011_130

36. Marth K., Breyer I., Focke-Tejkl M., Blatt K., Shamji M.H., Layhadi J., et al. A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype. J. Immunol. 2013; 190(7): 3068–78. https://doi.org/10.4049/jimmunol.1202441

37. Бурместер Г.Р., Пецутто А. Наглядная иммунология. М.: Лаборатория знаний; 2018.

38. Niespodziana K., Focke-Tejkl M., Linhart B., Civaj V., Blatt K., Valent P., et al. A hypoallergenic cat vaccine based on Fel d 1-derived peptides fused to hepatitis B PreS. J. Allergy Clin. Immunol. 2011; 127(6): 1562–7. https://doi.org/10.1016/j.jaci.2011.02.004

39. Twaroch T.E., Focke M., Civaj V., Weber M., Balic N., Mari A., et al. Carrier-bound, nonallergenic Ole e 1 peptides for vaccination against olive pollen allergy. J. Allergy Clin. Immunol. 2011; 128(1): 178–84. https://doi.org/10.1016/j.jaci.2011.03.011

40. Zieglmayer P., Focke-Tejkl M., Schmutz R., Lemell P., Zieglmayer R., Weber M., et al. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine. 2016; 11: 43–57. https://doi.org/10.1016/j.ebiom.2016.08.02

41. Eckl-Dorna J., Weber M., Stanek V., Linhart B., Ristl R., Waltl E.E., et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG response. EBioMedicine. 2019; 50: 421–32. https://doi.org/10.1016/j.ebiom.2019.11.006.E.I

42. Каширина Е.И., Решетов П.Д., Алексеева Л.Г., Зубов В.П., Свирщевская Е.В. Иммуногенность белков, капсулированных в полимерные наночастицы на основе хитозана-альгината. Российский иммунологический журнал. 2014; 8(3): 901–4.

43. Каширина Е.И., Решетов П.Д., Алексеева Л.Г., Хлгатян С.В., Рязанцев Д.Ю., Гурьянова С.В. и др. Капсулирование аллергенов клещей домашней пыли в наночастицы на основе хитозана и альгината. Российские нанотехнологии. 2015; 10(7-8): 94–100.

44. Kashirina Е., Reshetov Р., Alekseeva L., Berzhets V., Ryazantsev D., Zubov V., et al. Encapsulation of allergens into chitosan-alginate nanoparticles prevents IgE binding. J. Vaccine Vaccination. 2018; 4(2): 012. Available at: https://jacobspublishers.com/uploads/article_pdf/50/scientific_50_1137_27052019034441.pdf

45. Yu H.Q., Liu Z.G., Guo H., Zhou Y.P. Therapeutic effect on murine asthma with sublingual use of Dermatophagoides farinaе/ chitosan nanoparticle vaccine. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2011; 29(1): 4–9. (in Chinese)

46. Чубукова О.В., Никоноров Ю.М. Перспективы применения ДНК-вакцин в профилактике хантавирусных инфекций. Тихоокеанский медицинский журнал. 2008; (2): 37–40.

47. Liu M.A. DNA vaccines: an historical perspective and view to the future. Immunol. Rev. 2011; 239(1): 62–84. https://doi.org/10.1111/j.1600-065X.2010.00980

48. Lu S. Immunogenicity of DNA vaccines in humans: It takes two to tango. Human Vaccines. 2008; 4(6): 449–52. https://doi.org/10.4161/hv.4.6.6179

49. Marques E.T., Chikhlikar P., de Arruda L.B., Leao I.C., Lu Y., Wong J., et al. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J. Biol. Chem. 2003; 278(39): 37926–36. https://doi.org/10.1074/jbc.M303336200

50. Graham B.S., Enama M.E., Nason M.C., Gordon I.J., Peel S.A., Ledgerwood J.E., et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One. 2013; 8(4): e59340. https://doi.org/10.1371/journal.pone.0059340

51. Su Y., Connolly M., Marketon A., Heiland T. CryJ-LAMP DNA vaccines for Japanese Red Cedar allergy induce robust Th1type immune responses in murine model. J. Immunol. Res. 2016; 2016: 4857869. https://doi.org/10.1155/2016/4857869

52. Weinberger E.E., Isakovic A., Scheiblhofer S., Ramsauer C., Reiter K., Hauser-Kronberger C., et al. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine. Vaccine. 2013; 31(51): 6113–21. https://doi.org/10.1016/j.vaccine.2013.08.005

53. Zhu Z., Yu J., Niu Y., Sun S., Liu Y., Saxon A., et al. Prophylactic and therapeutic effects of polylysine-modified Ara h 2 DNA vaccine in a mouse model of peanut allergy. Int. Arch. Allergy Immunol. 2017; 171(3-4): 241–50. https://doi.org/10.1159/000453264

54. Soliman M., Ellis A.K. The role of synthetic peptide immuno-regulatory epitope (SPIRE) in the treatment of allergic disease. Curr. Treat. Options Allergy. 2017; 4(1): 22–9. https://doi.org/10.1007/s40521-017-0115-7

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 104-112

Allergy vaccines for specific immunotherapy

Petrova S. Yu., Khlgatian S. V., Berzhets V. M., Vasileva A. V.

https://doi.org/10.36233/0372-9311-11

Abstract

Allergen-specific immunotherapy (ASIT) has been used for more than a hundred years to treat patients with IgEmediated allergic diseases. The most common allergens have been obtained using molecular cloning technology in the past two decades. To increase the safety of immunotherapy, a large group of genetically modified allergens with reduced allergenic activity was created. The mechanism of action of these therapeutic allergens differs from natural allergen extracts, and more research is needed to understand how desensitization occurs in each case. The objective of this review is to introduce readers to new therapeutic allergy vaccines and their structural modification features as well as immunological effects on the body. To achieve this objective, we have analyzed and systematized the experimental developments presented in the literature on the main directions of creating new allergy vaccines: hypoallergenic derivatives of recombinant allergens, T cell epitope-based allergy vaccines and B cell epitope-based allergy vaccines, DNA vaccines.
Summing up the results of the research presented in the literature, it is necessary to note the high heterogeneity of designs used to achieve the high efficiency of the developed therapeutic allergens. All allergy vaccines presented in the review solve the tasks set by the researchers: in experimental animal models they induce immunogenicity or tolerance, in clinical trials they reduce the symptoms of allergic reactions. The the effectiveness of the proposed medicinal products is quite high but its evaluation requires further long-term preclinical and clinical trials to confirm the safety and harmlessness of the created allergy vaccines.

References

1. Petrova S.Yu., Khlgatyan S.V., Berzhets V.M., Radikova O.V. Sovremennaya kontseptsiya patogeneza atopicheskikh zabolevanii. Immunopatologiya, allergologiya, infektologiya. 2019;n(1): 72–9. https://doi.org/10.14427/jipai.2019.1.72

2. Petrova S.Yu., Berzhets V.M., Petrova N.S., Khruleva V.A., Emel'yanov O.Yu., Khlgatyan S.V. i dr. Perspektivy razvitiya lechebnykh form allergenov. Ot abstraktnykh problem k konkretnym resheniyam. Immunopatologiya, allergologiya, infektologiya. 2018; (1): 40–7. https://doi.org/10.14427/jipai.2018.1.40

3. Calderon M.A., Casale T.B., Togias A., Bousquet J., Durham S.R., Demoly P. Allergen-specific immunotherapy for respiratory allergies: from meta-analysis to regulation and beyond. J. Allergy Clin. Immunol. 2011; 127(4): 30–8. https://doi.org/10.1016/j.jaci.2010.08.024

4. Meadows A., Kaambwa B., Novielli N., Huissoon A., FrySmith A., Meads C., et al. A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis. Health Technol. Assess. 2013; 17(27): 1–322. https://doi.org/10.3310/hta17270

5. Lockey R.F. "ARIA": global guidelines and new forms of allergen immunotherapy. J. Allergy Clin. Immunol. 2001; 108(4): 497–9. https://doi.org/10.1067/mai.2001.118638

6. Berzhets V.M., Babakhin A.A., Petrova N.S., Vasil'eva A.V., Khlgatyan S.V., Emel'yanova O.Yu. Novye formy kleshchevykh allergoidov. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2019; 96(3): 15–21. https://doi.org/10.36233/0372-9311-2019-3-15-21

7. Danilycheva I.V., Il'ina N.I., Shul'zhenko A.E. Opyt primeneniya karbamilirovannogo monomernogo allergoida Lais ® dlya sublingval'noi immunoterapii patsientov s allergicheskim rinokon\"yunktivitom, vyzvannym pyl'tsoi zlakovykh trav. Rossiiskii allergologicheskii zhurnal. 2013; (6): 58–63.

8. Petrov R.V., Khaitov R.M., Nekrasov A.V., Fedoseeva V.N., Puchkova N.G., Kamysheva V.A. i dr. Allergotropin dlya lecheniya pollinozov i sposob lecheniya pollinozov. Patent RF №2205661; 2001.

9. Nguyen N.T., Raskopf E., Shah-Hosseini K., Zadoyan G., Mösges R. A review of allergoid immunotherapy: is cat allergy a suitable target? Immunotherapy. 2016; 8(3): 331–49. https://doi.org/10.2217/imt.15.121

10. Makatsori M., Pfaar O., Lleonart R., Calderon M.A. Recombinant allergen immunotherapy: clinical evidence of efficacy a review. Curr. Allergy Asthma Rep. 2013; 13(4): 371–80. https://doi.org/10.1007/s11882-013-0359-7

11. Valenta R., Niespodziana K., Focke-Tejkl M., Marth K., Huber H., Neubauer A. Recombinant allergens: What does the future hold? J. Allergy Clin. Immunol. 2011; 127(4): 860–4. https://doi.org/10.1016/j.jaci.2011.02.016

12. Valenta R., Linhart B., Swoboda I., Niederberger V. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy. 2011; 66(6): 775–83. https://doi.org/10.1111/j.1398-9995.2011.02565.x.

13. Linhart B., Valenta R. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives. Vaccine. 2012; 30(29): 4328–35. https://doi.org/10.1016/j.vaccine.2011.11.011

14. Chen K.W., Blatt K., Thomas W.R., Swoboda I., Valent P., Valenta R., et al. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J. Allergy Clin. Immunol. 2012; 130(2): 435–43. https://doi.org/10.1016/j.jaci.2012.05.035

15. Valenta R., Ferreira F., Focke-Tejkl M., Marth K., Huber H., Neubauer A., et al. From allergen genes to allergy vaccines. Annu. Rev. Immunol. 2010; 28: 211–41. https://doi.org/10.1016/j.jaci.2011.02.016

16. Valenta R. The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol. 2002; 2(6): 446–53. https://doi.org/10.1038/nri824

17. Svirshchevskaya E.V., Alekseeva L.G. Geterologichnyi peptidnyi mini antigen v sostave polimernoi chastitsy dlya sozdaniya protivoallergennoi vaktsiny. Patent RF № 2480479; 2013.

18. Marth K., Focke-Tejkl M., Lupinek Ch., Valenta R., Niederberger V. Allergen peptides, recombinant allergens and hypoallergens for allergen-specific immunotherapy. Curr. Treat. Options Allergy. 2014; 1(1): 91–106. https://doi.org/10.1007/s40521-013-0006-5

19. Sircar G., Jana K., Dasgupta A., Saha S., Gupta Bhattacharya S. Epitope mapping of Rhi o 1 and generation of a hypoallergenic variant: a candidate molecule for fungal allergy vaccines. J Biol. Chem. 2016; 291(34): 18016–29. https://doi.org/10.1074/jbc.M116.732032

20. Martínez D., Munera M., Cantillo J.F., Wortmann J., Zakzuk J., Keller W., et al. An engineered hybrid protein from Dermatophagoides pteronyssinus allergens shows hypoallergenicity. J. Mol. Sci. 2019; 20(12): 3025. https://doi.org/10.3390/ijms20123025

21. Sanchez-Trincado J.L., Gomez-Perosanz M., Reche R.A. Fundamentals and methods for T- and B-cell epitope prediction. J. Immunol. Res. 2017; 2017: 2680160. https://doi.org/10.1155/2017/2680160

22. Woodfolk J.A. T-cell responses to allergens. J. Allergy Clin. Immunol. 2007; 119(2): 280–94. https://doi.org/10.1016/j.jaci.2006.11.008

23. Worm M., Lee H.H., Kleine-Tebbe J., Hafner R.P., Laidler P., Healey D., et al. Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J. Allergy Clin. Immunol. 2011; 127(1): 89–97. https://doi.org/10.1016/j.jaci.2010.11.029

24. Greenbaum J., Sidney J., Chung J., Brander C., Peters B., Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics. 2011; 63(6): 325–35. https://doi.org/10.1007/s00251-011-0513-0

25. Patel D., Couroux P., Hickey P., Salapatek A.M., Laidler P., Larché M., et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2013; 131(1): 103–9. https://doi.org/10.1016/j.jaci.2012.07.028

26. Sancho A.I., Wallner M., Hauser M., Nagl B., Himly M., Asam C., et al. T cell epitope containing domains of ragweed Amb a 1 and mugwort Art v 6 modulate immunologic responses in humans and mice. PLoS One. 2017; 12(1): e0169784. https://doi.org/10.1371/journal.pone.0169784

27. Tonti E., Larch M. Concepts and perspectives on peptide-based immunotherapy in allergy. Allergo J. Int. 2016; 25(6): 144–53. https://doi.org/10.1007/s40629-016-0126-0

28. Pellaton C., Perrin Y., Boudousquie C., Barbier N., Wassenberg J., Corradin G., et al. Novel birch pollen specific immunotherapy formulation based on contiguous overlapping peptides. Clin. Transl. Allergy. 2013; 3(1): 17. https://doi.org/10.1186/2045-7022-3-17

29. Akdis M. New treatments for allergen immunotherapy. World Allergy Organ. J. 2014; 7(1): 23. https://doi.org/10.1186/1939-4551-7-23

30. Hafner1 R.P., Couroux P., Salapatek A., Hickey P., Laidler P., Larché M., et al. Immunotherapy – 2080 Fel d 1 derived peptide antigen desensitization results in a persistent treatment effect on symptoms of cat allergy 1 year after 4 doses. World Allergy Organ. Journal. 2013; 6(1): 162. https://doi.org/10.1186/1939-4551-6-S1-P162

31. Cox L., Compalati E., Kundig T., Larche M. New directions in immunotherapy. Curr. Allergy Asthma Rep. 2013; 13(2): 178–95. https://doi.org/10.1007/s11882-012-0335-7

32. Calzada D., Cremades-Jimeno L., Pedro M.Á., Baos S., Rial M., Sastre J., et al. Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy. Sci. Rep. 2019; 9(1): 15942. https://doi.org/10.1038/s41598-019-52286-3

33. Focke-Tejkl M., Weber M., Niespodziana K., Neubauer A., Huber H., Henning R., et al. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J. Allergy Clin. Immunol. 2015; 130(5): 1207-7. e1-11. https://doi.org/10.1016/j.jaci.2014.09.012

34. Twaroch T.E., Focke M., Fleischmann K., Balic N., Lupinek C., Blatt K., et al. Carrier-bound Alt a 1 peptides without allergenic activity fo vaccination against Alternaria alternata allergy. Clin. Exp. Allergy. 2012; 42(6): 966–75. https://doi.org/10.1111/j.1365-2222.2012.03996

35. Edlmayr J., Niespodziana K., Focke-Tejkl M., Linhart B., Valenta R. Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases. Curr. Top. Microbiol. Immunol. 2011; 352: 121–40. https://doi.org/10.1007/82_2011_130

36. Marth K., Breyer I., Focke-Tejkl M., Blatt K., Shamji M.H., Layhadi J., et al. A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype. J. Immunol. 2013; 190(7): 3068–78. https://doi.org/10.4049/jimmunol.1202441

37. Burmester G.R., Petsutto A. Naglyadnaya immunologiya. M.: Laboratoriya znanii; 2018.

38. Niespodziana K., Focke-Tejkl M., Linhart B., Civaj V., Blatt K., Valent P., et al. A hypoallergenic cat vaccine based on Fel d 1-derived peptides fused to hepatitis B PreS. J. Allergy Clin. Immunol. 2011; 127(6): 1562–7. https://doi.org/10.1016/j.jaci.2011.02.004

39. Twaroch T.E., Focke M., Civaj V., Weber M., Balic N., Mari A., et al. Carrier-bound, nonallergenic Ole e 1 peptides for vaccination against olive pollen allergy. J. Allergy Clin. Immunol. 2011; 128(1): 178–84. https://doi.org/10.1016/j.jaci.2011.03.011

40. Zieglmayer P., Focke-Tejkl M., Schmutz R., Lemell P., Zieglmayer R., Weber M., et al. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine. 2016; 11: 43–57. https://doi.org/10.1016/j.ebiom.2016.08.02

41. Eckl-Dorna J., Weber M., Stanek V., Linhart B., Ristl R., Waltl E.E., et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG response. EBioMedicine. 2019; 50: 421–32. https://doi.org/10.1016/j.ebiom.2019.11.006.E.I

42. Kashirina E.I., Reshetov P.D., Alekseeva L.G., Zubov V.P., Svirshchevskaya E.V. Immunogennost' belkov, kapsulirovannykh v polimernye nanochastitsy na osnove khitozana-al'ginata. Rossiiskii immunologicheskii zhurnal. 2014; 8(3): 901–4.

43. Kashirina E.I., Reshetov P.D., Alekseeva L.G., Khlgatyan S.V., Ryazantsev D.Yu., Gur'yanova S.V. i dr. Kapsulirovanie allergenov kleshchei domashnei pyli v nanochastitsy na osnove khitozana i al'ginata. Rossiiskie nanotekhnologii. 2015; 10(7-8): 94–100.

44. Kashirina E., Reshetov R., Alekseeva L., Berzhets V., Ryazantsev D., Zubov V., et al. Encapsulation of allergens into chitosan-alginate nanoparticles prevents IgE binding. J. Vaccine Vaccination. 2018; 4(2): 012. Available at: https://jacobspublishers.com/uploads/article_pdf/50/scientific_50_1137_27052019034441.pdf

45. Yu H.Q., Liu Z.G., Guo H., Zhou Y.P. Therapeutic effect on murine asthma with sublingual use of Dermatophagoides farinae/ chitosan nanoparticle vaccine. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2011; 29(1): 4–9. (in Chinese)

46. Chubukova O.V., Nikonorov Yu.M. Perspektivy primeneniya DNK-vaktsin v profilaktike khantavirusnykh infektsii. Tikhookeanskii meditsinskii zhurnal. 2008; (2): 37–40.

47. Liu M.A. DNA vaccines: an historical perspective and view to the future. Immunol. Rev. 2011; 239(1): 62–84. https://doi.org/10.1111/j.1600-065X.2010.00980

48. Lu S. Immunogenicity of DNA vaccines in humans: It takes two to tango. Human Vaccines. 2008; 4(6): 449–52. https://doi.org/10.4161/hv.4.6.6179

49. Marques E.T., Chikhlikar P., de Arruda L.B., Leao I.C., Lu Y., Wong J., et al. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J. Biol. Chem. 2003; 278(39): 37926–36. https://doi.org/10.1074/jbc.M303336200

50. Graham B.S., Enama M.E., Nason M.C., Gordon I.J., Peel S.A., Ledgerwood J.E., et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One. 2013; 8(4): e59340. https://doi.org/10.1371/journal.pone.0059340

51. Su Y., Connolly M., Marketon A., Heiland T. CryJ-LAMP DNA vaccines for Japanese Red Cedar allergy induce robust Th1type immune responses in murine model. J. Immunol. Res. 2016; 2016: 4857869. https://doi.org/10.1155/2016/4857869

52. Weinberger E.E., Isakovic A., Scheiblhofer S., Ramsauer C., Reiter K., Hauser-Kronberger C., et al. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine. Vaccine. 2013; 31(51): 6113–21. https://doi.org/10.1016/j.vaccine.2013.08.005

53. Zhu Z., Yu J., Niu Y., Sun S., Liu Y., Saxon A., et al. Prophylactic and therapeutic effects of polylysine-modified Ara h 2 DNA vaccine in a mouse model of peanut allergy. Int. Arch. Allergy Immunol. 2017; 171(3-4): 241–50. https://doi.org/10.1159/000453264

54. Soliman M., Ellis A.K. The role of synthetic peptide immuno-regulatory epitope (SPIRE) in the treatment of allergic disease. Curr. Treat. Options Allergy. 2017; 4(1): 22–9. https://doi.org/10.1007/s40521-017-0115-7