Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 91-103

Современные представления об этиопатогенетических и генетических особенностях токсинов Clostridium perfringens

Лобзин Ю. В., Кветная А. С., Скрипченко Н. В., Железова Л. И.

https://doi.org/10.36233/0372-9311-37

Аннотация

В обзоре представлены современные сведения о генетике и этиопатогенетических особенностях токсинов и ферментов Clostridium рerfringens, в том числе о роли энтеротоксина Clostridium рerfringens в развитии пищевого отравления и ряда кишечных заболеваний людей, животных и птиц.
Список литературы

1. Kiu R., Hall L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microb. Infect. 2018; 7(1): 141. https://doi.org/10.1038/s41426-018-0144-8

2. Hobbs B.C., Smith M.T., Oakley C.L., Warrack G.H., Cruickshank J.C. Clostridium welchii food poisoning. J. Hyg. 1953;51:75–101. dоi: 10.1017/S0022172400015515

3. McClane B.A., Uzal F.A., Miyakawa M.F., Lyerly D., Wilkins T.D. The enterotoxic clostridia. In: Dworkin M., Falkow S., Rosenburg E., Schleifer H., Stackebrandt E., eds. The Prokaryotes. New York: Springer NY Press; 2006: 688–752.

4. Freedman J.C., Shrestha A. Clostridium perfringens enterotoxin: action, genetics, and translational application. Toxins (Basel). 2016; 8(3): 73. https://doi.org/10.3390/toxins8030073

5. Глотова Т.И., Терентьева Т.Е., Глотов А.Г. Возбудители и возрастная восприимчивость крупного рогатого скота к клостридиозам. Сибирский вестник сельскохозяйственной науки. 2017; 47(1): 90–6.

6. Терентьева Т.Е., Глотов А.Г., Глотова Т.И., Котенева С.В. Видовой спектр бактерий рода Clostridium, выделенных от крупного рогатого скота на молочных комплексах. Российский ветеринарный журнал. Сельскохозяйственные животные. 2016; (1): 5–9.

7. Мардер В., Капустин А.В., Щербаков П., Шилова Е. Проблема клостридиозов в молочном животноводстве. БИО. 2016; (5): 34–8.

8. Rood J.I., Adams V., Lacey J., Lyras D., McClane B.A., Melville S.B., et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018; 53: 5–10. https://doi.org/10.1016/j.anaerobe.2018.04.011

9. Yonogi S., Matsuda S., Kawai T., Yoda T., Harada T., Kumeda Y., et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect. Immun. 2014; 82(6): 2390–9. https://doi.org/10.1128/iai.01759-14

10. Titball R.W., Naylor C.E., Basak A.K. The Clostridium perfringens alpha-toxin. Anaerobe. 1999; 5(2): 51–64. https://doi.org/10.1006/anae.1999.0191

11. Sakurai J., Nagahama M., Oda M. Clostridium perfringens alpha-toxin: characterization and mode of action. J. Biochem. (Tokyo). 2004; 136(5): 569–74. https://doi.org/10.1093/jb/mvh161

12. Rossjohn J., Polekhina G., Feil S.C., Morton C.J., Tweten R.K., Parker M.W. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol. 2007; 367(5): 1227–36. https://doi.org/10.1016/j.jmb.2007.01.042

13. Ma M., Li J., McClane B.A. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect. Immun. 2012; 80(12): 4354–63. https://doi.org/10.1128/iai.00818-12

14. Bryant A.E., Chen R.Y., Nagata Y., Wang Y., Lee C.H., Finegold S., et al. Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. J. Infect. Dis. 2000; 182(3): 799–807. https://doi.org/10.1086/315756

15. Hunter S.E.C., Brown J.E., Oynston P.C.F., Sakurai J., Titball R.W. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 1993; 61: 3958–65. https://doi.org/10.1128/iai.61.9.3958-3965.1993

16. Macias Rioseco M., Beingesser J., Uzal F.A. Freezing or adding trypsin inhibitor to equine intestinal contents extends the lifespan of Clostridium perfringens beta-toxin for diagnostic purposes. Anaerobe. 2012; 18(3): 357–60. https://doi.org/10.1016/j.anaerobe.2012.03.003

17. Sakurai J., Duncan C.L. Some properties of the beta-toxin produced by Clostridium perfringens type C. Infect. Immun. 1978; 21(2): 678–80. https://doi.org/10.1128/iai.21.2.678-680.1978

18. Shatursky O., Bayles R., Rogers M., Jost B.H., Songer J.G., Tweten R.K. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect. Immun. 2000; 68(10): 5546–51. https://doi.org/10.1128/iai.68.10.5546-5551.2000

19. Gibert M., Jolivet-Reynaud C., Popoff M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997; 203(1): 65–73. https://doi.org/10.1016/s0378-1119(97)00493-9

20. Popoff M.R. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 2011; 278(23): 4602–15. https://doi.org/10.1111/j.1742-4658.2011.08145.x

21. Bokori-Brown M., Savva C.G., Fernandes da Costa S.P., Naylor C.E., Basak A.K., Titball R.W. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 2011; 278(23): 4589–601. https://doi.org/10.1111/j.1742-4658.2011.08140.x

22. Minami J., Katayama S., Matsushita O., Matsushita C., Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol. 1997; 41(7): 527–35. https://doi.org/10.1111/j.1348-0421.1997.tb01888.x

23. Miyata S., Matsushita O., Minami J., Katayama S., Shimamoto S., Okabe A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J. Biol. Chem. 2001; 276(17): 13778–83. https://doi.org/10.1074/jbc.m011527200

24. Robertson S.L., Li J., Uzal F.A., McClane B.A. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One. 2011; 6(7): e22053. https://doi.org/10.1371/journal.pone.0022053

25. Nestorovich E.M., Karginov V.A., Bezrukov S.M. Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys. J. 2010; 99(3): 782–9. https://doi.org/10.1016/j.bpj.2010.05.014

26. Sakurai J., Nagahama M., Oda M., Tsuge H., Kobayashi K. Clostridium perfringens iota-toxin: structure and function. Toxins (Basel). 2009; 1(2): 208–28. https://doi.org/10.3390/toxins1020208

27. Stiles B.G., Wigelsworth D.J., Popoff M.R., Barth H. Clostridial binary toxins: iota and C2 family portraits. Front. Cell. Infect. Microbiol. 2011; 1: 11. https://doi.org/10.3389/fcimb.2011.00011

28. Barth H., Stiles B.G. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr. Med. Chem. 2008; 15(5): 459–69. https://doi.org/10.2174/092986708783503195

29. Manich M., Knapp O., Gibert M., Maier E., Jolivet-Reynaud C., Geny B. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One. 2008; 3(11): e3764. https://doi.org/10.1371/journal.pone.0003764

30. Abildgaard L., Sondergaard T.E., Engberg R.M., Schramm A., Hojberg O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet. Microbiol. 2010; 144(1-2): 231–5. https://doi.org/10.1016/j.vetmic.2009.12.036

31. Yan X., Porter C.J., Hardy S.P., Steer D., Smith A.I., Quinsey N.S., et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. mBio. 2013; 4(1): e00019–13. https://doi.org/10.1128/mbio.00019-13

32. Keyburn A.L., Bannam T.L., Moore R.J., Rood J.I. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel). 2010; 2(7): 1913–27. https://doi.org/10.3390/toxins2071913

33. Engstrom B.E., Johansson A., Aspan A., Kaldhusdal M. Genetic relatedness and netB prevalence among environmental Clostridium perfringens strains associated with a broiler flock affected by mild necrotic enteritis. Vet. Microbiol. 2012; 159(1-2): 260–4. https://doi.org/10.1016/j.vetmic.2012.03.024

34. Paredes-Sabja D., Sarker N., Sarker M.R. Clostridium perfringens tpeL is expressed during sporulation. Microb. Pathog. 2011; 51(5): 384–8. https://doi.org/10.1016/j.micpath.2011.05.006

35. Guttenberg G., Hornei S., Jank T., Schwan C., Lu W., Einsle O., et al. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J. Biol. Chem. 2012; 287(30): 24929–40. https://doi.org/10.1074/jbc.m112.347773

36. Nagahama M., Ohkubo A., Oda M., Kobayashi K., Amimoto K., Miyamoto K., et al. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect. Immun. 2011; 79(2): 905–10. https://doi.org/10.1128/iai.01019-10

37. Coursodon C.F., Glock R.D., Moore K.L., Cooper K.K., Songer J.G. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe. 2012; 18(1): 117–21. https://doi.org/10.1016/j.anaerobe.2011.10.001

38. Li J., Sayeed S., Robertson S., Chen J., McClane B.A. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D train CN3718. PLoS Pаthog. 2011; 7(12): e1002429i. https://doi.org/10.1371/journal.ppat.1002429

39. Chakrabarti G., McClane B.A. The importance of calcium influx, calpain, and calmodulin for the activation of Caco-2 cell death pathways by Clostridium perfringens enterotoxin. Cell. Microbiol. 2005; 7(1): 129–46. https://doi.org/10.1111/j.1462-5822.2004.00442.x

40. McClane B.A., Robertson S.L., Li J. Clostridium perfringens. In: Doyle M.P., Buchanan R.L., eds. Food Microbiology: Fundamentals and Frontiers. Washington: ASM Press; 2013: 465–89.

41. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M., Roy S., et al. Foodbome illness acquired in the United States — major pathogens. Emerg. Infect. Dis. 2011; 17(1): 7–15. https://doi.org/10.3201/eid1701.p11101

42. Hoffmann S., Batz M.B., Morris J.G. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J. Food Prot. 2012; 75(7): 1292–302. https://doi.org/10.4315/0362-028x.jfp-11-417

43. Li J., Paredes-Sabja D., Sarker M.R., McClane B.A. Further charactrization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One. 2009; 4(7): e6249. https://doi.org/10.1371/journal.pone.0006249

44. Li J., McClane B.A. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect. Immun. 2010; 78(10): 4286–93. https://doi.org/10.1128/iai.00528-10

45. Smithee L., McClane B., Distefano R.F., Uzal F., Songer J.G., Mallonee S., et al. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin. Infect. Dis. 2005; 40(10): E78–83. https://doi.org/10.1086/429829

46. Garcia J.P., Li J., Shrestha A., Freedman J.C., Beingesser J., McClane B.A., et al. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect. Immun. 2014; 82(6): 2211–8.

47. Centers for Disease Control and рrevention. Fatal foodbome Clostridium perfringens illness at a state psychiatric hospitalLouisiana, 2010. MMWR Morb Mortal Wkly Rep. 2012; 61(32): 605–8.

48. Lindstrom M., Heikinheimo A., Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol. 2011; 28(2): 192–8. https://doi.org/10.1016/j.fm.2010.03.020

49. Heikinheimo A., Lindstrom M., Granum P.E., Korkeala H. Humans as reservoir for enterotoxin gene-carrying Clostridium perfringens type A. Emerg. Infect. Dis. 2006; 12(11): 1724–9. https://doi.org/10.3201/eid1211.060478

50. Modi N., Wilcox M.H. Evidence for antibiotic induced Clostridium perfringens diarrhoea. J. Clin. Pathol. 2001; 54(10): 748–51. https://doi.org/10.1136/jcp.54.10.748

51. Carman R.J. Clostridium perfringens in spontaneous and antibiotic-associated diarrhoea of man and other animals. Rev. Med. Microbiol. 1997; 8(Suppl. 1): S43–5.

52. Machida Y. An outbreak of enterocolitis due to Clostridium perfringens in a hospital for the severely disabled. Kansenshogaku Zasshi. 1989; 63(4): 4106–6. https://doi.org/10.11150/kansenshogakuzasshi1970.63.410 (in Japanese)

53. Hansen K. Darmbrand — Enteritis Necroticans. Stuttgart: George Thieme; 1949.

54. Murrell T.G., Roth L., Egerton J., Samels J., Walker P.D. Pig-Bel: enteritis necroticans. A study in diagnosis and management. Lancet. 1966; 1(7431): 217–22. https://doi.org/10.1016/s0140-6736(66)90048-1

55. Wisniewski J.A., Rood J.I. The Tcp conjugation system of Clostridium perfringens. Plasmid. 2017; 91: 28–36. https://doi.org/10.1016/j.plasmid.2017.03.001

56. Li J., Adams B., Bannam T. , Mijmoto K., еt al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013; 77(2): 208–233. https://doi.org/10.1128/MMBR.00062-12

57. Kiu R., Brown J., Bedwell H., Leclaire1 C., et al. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Animal Microbiome. 2019;(1):12. https://doi.org/10.1186/s42523-019-0015-1.

58. Li J., Freedman J.C., Evans D.R., McClane B.A. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect. Immun. 2017; 85(3): e00855-16. https://doi.org/10.1128/iai.00855-16

59. Gilbert R.J. Cholesterol-dependent cytolysins. Adv. Exp. Med. Biol. 2010; 677: 56–66. https://doi.org/10.1007/978-1-4419-6327-7_5

60. Llanco LA., Nakano V., Avila-Campos M.J. Sialidase production and genetic diversity in Clostridium perfringens type A isolated from chicken with necrotic enteritis in Brazil. Curr. Microbiol. 2015; 70(3): 330–7. https://doi.org/10.1007/s00284-014-0722-5

61. Li J., McClane B.A. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 using sialyated host macromolecules (Mucin) or Caco-2 cells. Infect. Immun. 2018; 86(2):e00547-17. https://doi.org/10.1128/iai.00547-17

62. Kiu R., Caim S., Alexander S., Pachori P., Hall L.J. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front. Microbiol. 2017; 8; 2485. https://doi.org/10.3389/fmicb.2017.02485

63. Kiu R., Caim S., Painset A., Pickard D., Swift C., Dougan G., et al. Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in England and Wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids. Microb. Genom. 2019; 5(10): e000297. https://doi.org/10.1099/mgen.0.000297

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 91-103

Current notions about etiopathogenic and genetics specific features of Сlostridium perfringens toxins

Lobzin Yu. V., Kvetnaya A. S., Skripchenko N. V., Zhelezova L. I.

https://doi.org/10.36233/0372-9311-37

Abstract

The review presents modern data on the genetics and etiopathogenetic features of Clostridium perfringens toxins, including the role of Clostridium perfringens enterotoxin, in the development of food poisoning and a number of intestinal diseases in humans, animals and birds.
References

1. Kiu R., Hall L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microb. Infect. 2018; 7(1): 141. https://doi.org/10.1038/s41426-018-0144-8

2. Hobbs B.C., Smith M.T., Oakley C.L., Warrack G.H., Cruickshank J.C. Clostridium welchii food poisoning. J. Hyg. 1953;51:75–101. doi: 10.1017/S0022172400015515

3. McClane B.A., Uzal F.A., Miyakawa M.F., Lyerly D., Wilkins T.D. The enterotoxic clostridia. In: Dworkin M., Falkow S., Rosenburg E., Schleifer H., Stackebrandt E., eds. The Prokaryotes. New York: Springer NY Press; 2006: 688–752.

4. Freedman J.C., Shrestha A. Clostridium perfringens enterotoxin: action, genetics, and translational application. Toxins (Basel). 2016; 8(3): 73. https://doi.org/10.3390/toxins8030073

5. Glotova T.I., Terent'eva T.E., Glotov A.G. Vozbuditeli i vozrastnaya vospriimchivost' krupnogo rogatogo skota k klostridiozam. Sibirskii vestnik sel'skokhozyaistvennoi nauki. 2017; 47(1): 90–6.

6. Terent'eva T.E., Glotov A.G., Glotova T.I., Koteneva S.V. Vidovoi spektr bakterii roda Clostridium, vydelennykh ot krupnogo rogatogo skota na molochnykh kompleksakh. Rossiiskii veterinarnyi zhurnal. Sel'skokhozyaistvennye zhivotnye. 2016; (1): 5–9.

7. Marder V., Kapustin A.V., Shcherbakov P., Shilova E. Problema klostridiozov v molochnom zhivotnovodstve. BIO. 2016; (5): 34–8.

8. Rood J.I., Adams V., Lacey J., Lyras D., McClane B.A., Melville S.B., et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018; 53: 5–10. https://doi.org/10.1016/j.anaerobe.2018.04.011

9. Yonogi S., Matsuda S., Kawai T., Yoda T., Harada T., Kumeda Y., et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect. Immun. 2014; 82(6): 2390–9. https://doi.org/10.1128/iai.01759-14

10. Titball R.W., Naylor C.E., Basak A.K. The Clostridium perfringens alpha-toxin. Anaerobe. 1999; 5(2): 51–64. https://doi.org/10.1006/anae.1999.0191

11. Sakurai J., Nagahama M., Oda M. Clostridium perfringens alpha-toxin: characterization and mode of action. J. Biochem. (Tokyo). 2004; 136(5): 569–74. https://doi.org/10.1093/jb/mvh161

12. Rossjohn J., Polekhina G., Feil S.C., Morton C.J., Tweten R.K., Parker M.W. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol. 2007; 367(5): 1227–36. https://doi.org/10.1016/j.jmb.2007.01.042

13. Ma M., Li J., McClane B.A. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect. Immun. 2012; 80(12): 4354–63. https://doi.org/10.1128/iai.00818-12

14. Bryant A.E., Chen R.Y., Nagata Y., Wang Y., Lee C.H., Finegold S., et al. Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. J. Infect. Dis. 2000; 182(3): 799–807. https://doi.org/10.1086/315756

15. Hunter S.E.C., Brown J.E., Oynston P.C.F., Sakurai J., Titball R.W. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 1993; 61: 3958–65. https://doi.org/10.1128/iai.61.9.3958-3965.1993

16. Macias Rioseco M., Beingesser J., Uzal F.A. Freezing or adding trypsin inhibitor to equine intestinal contents extends the lifespan of Clostridium perfringens beta-toxin for diagnostic purposes. Anaerobe. 2012; 18(3): 357–60. https://doi.org/10.1016/j.anaerobe.2012.03.003

17. Sakurai J., Duncan C.L. Some properties of the beta-toxin produced by Clostridium perfringens type C. Infect. Immun. 1978; 21(2): 678–80. https://doi.org/10.1128/iai.21.2.678-680.1978

18. Shatursky O., Bayles R., Rogers M., Jost B.H., Songer J.G., Tweten R.K. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect. Immun. 2000; 68(10): 5546–51. https://doi.org/10.1128/iai.68.10.5546-5551.2000

19. Gibert M., Jolivet-Reynaud C., Popoff M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997; 203(1): 65–73. https://doi.org/10.1016/s0378-1119(97)00493-9

20. Popoff M.R. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 2011; 278(23): 4602–15. https://doi.org/10.1111/j.1742-4658.2011.08145.x

21. Bokori-Brown M., Savva C.G., Fernandes da Costa S.P., Naylor C.E., Basak A.K., Titball R.W. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 2011; 278(23): 4589–601. https://doi.org/10.1111/j.1742-4658.2011.08140.x

22. Minami J., Katayama S., Matsushita O., Matsushita C., Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol. 1997; 41(7): 527–35. https://doi.org/10.1111/j.1348-0421.1997.tb01888.x

23. Miyata S., Matsushita O., Minami J., Katayama S., Shimamoto S., Okabe A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J. Biol. Chem. 2001; 276(17): 13778–83. https://doi.org/10.1074/jbc.m011527200

24. Robertson S.L., Li J., Uzal F.A., McClane B.A. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One. 2011; 6(7): e22053. https://doi.org/10.1371/journal.pone.0022053

25. Nestorovich E.M., Karginov V.A., Bezrukov S.M. Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys. J. 2010; 99(3): 782–9. https://doi.org/10.1016/j.bpj.2010.05.014

26. Sakurai J., Nagahama M., Oda M., Tsuge H., Kobayashi K. Clostridium perfringens iota-toxin: structure and function. Toxins (Basel). 2009; 1(2): 208–28. https://doi.org/10.3390/toxins1020208

27. Stiles B.G., Wigelsworth D.J., Popoff M.R., Barth H. Clostridial binary toxins: iota and C2 family portraits. Front. Cell. Infect. Microbiol. 2011; 1: 11. https://doi.org/10.3389/fcimb.2011.00011

28. Barth H., Stiles B.G. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr. Med. Chem. 2008; 15(5): 459–69. https://doi.org/10.2174/092986708783503195

29. Manich M., Knapp O., Gibert M., Maier E., Jolivet-Reynaud C., Geny B. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One. 2008; 3(11): e3764. https://doi.org/10.1371/journal.pone.0003764

30. Abildgaard L., Sondergaard T.E., Engberg R.M., Schramm A., Hojberg O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet. Microbiol. 2010; 144(1-2): 231–5. https://doi.org/10.1016/j.vetmic.2009.12.036

31. Yan X., Porter C.J., Hardy S.P., Steer D., Smith A.I., Quinsey N.S., et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. mBio. 2013; 4(1): e00019–13. https://doi.org/10.1128/mbio.00019-13

32. Keyburn A.L., Bannam T.L., Moore R.J., Rood J.I. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel). 2010; 2(7): 1913–27. https://doi.org/10.3390/toxins2071913

33. Engstrom B.E., Johansson A., Aspan A., Kaldhusdal M. Genetic relatedness and netB prevalence among environmental Clostridium perfringens strains associated with a broiler flock affected by mild necrotic enteritis. Vet. Microbiol. 2012; 159(1-2): 260–4. https://doi.org/10.1016/j.vetmic.2012.03.024

34. Paredes-Sabja D., Sarker N., Sarker M.R. Clostridium perfringens tpeL is expressed during sporulation. Microb. Pathog. 2011; 51(5): 384–8. https://doi.org/10.1016/j.micpath.2011.05.006

35. Guttenberg G., Hornei S., Jank T., Schwan C., Lu W., Einsle O., et al. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J. Biol. Chem. 2012; 287(30): 24929–40. https://doi.org/10.1074/jbc.m112.347773

36. Nagahama M., Ohkubo A., Oda M., Kobayashi K., Amimoto K., Miyamoto K., et al. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect. Immun. 2011; 79(2): 905–10. https://doi.org/10.1128/iai.01019-10

37. Coursodon C.F., Glock R.D., Moore K.L., Cooper K.K., Songer J.G. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe. 2012; 18(1): 117–21. https://doi.org/10.1016/j.anaerobe.2011.10.001

38. Li J., Sayeed S., Robertson S., Chen J., McClane B.A. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D train CN3718. PLoS Pathog. 2011; 7(12): e1002429i. https://doi.org/10.1371/journal.ppat.1002429

39. Chakrabarti G., McClane B.A. The importance of calcium influx, calpain, and calmodulin for the activation of Caco-2 cell death pathways by Clostridium perfringens enterotoxin. Cell. Microbiol. 2005; 7(1): 129–46. https://doi.org/10.1111/j.1462-5822.2004.00442.x

40. McClane B.A., Robertson S.L., Li J. Clostridium perfringens. In: Doyle M.P., Buchanan R.L., eds. Food Microbiology: Fundamentals and Frontiers. Washington: ASM Press; 2013: 465–89.

41. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M., Roy S., et al. Foodbome illness acquired in the United States — major pathogens. Emerg. Infect. Dis. 2011; 17(1): 7–15. https://doi.org/10.3201/eid1701.p11101

42. Hoffmann S., Batz M.B., Morris J.G. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J. Food Prot. 2012; 75(7): 1292–302. https://doi.org/10.4315/0362-028x.jfp-11-417

43. Li J., Paredes-Sabja D., Sarker M.R., McClane B.A. Further charactrization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One. 2009; 4(7): e6249. https://doi.org/10.1371/journal.pone.0006249

44. Li J., McClane B.A. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect. Immun. 2010; 78(10): 4286–93. https://doi.org/10.1128/iai.00528-10

45. Smithee L., McClane B., Distefano R.F., Uzal F., Songer J.G., Mallonee S., et al. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin. Infect. Dis. 2005; 40(10): E78–83. https://doi.org/10.1086/429829

46. Garcia J.P., Li J., Shrestha A., Freedman J.C., Beingesser J., McClane B.A., et al. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect. Immun. 2014; 82(6): 2211–8.

47. Centers for Disease Control and rrevention. Fatal foodbome Clostridium perfringens illness at a state psychiatric hospitalLouisiana, 2010. MMWR Morb Mortal Wkly Rep. 2012; 61(32): 605–8.

48. Lindstrom M., Heikinheimo A., Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol. 2011; 28(2): 192–8. https://doi.org/10.1016/j.fm.2010.03.020

49. Heikinheimo A., Lindstrom M., Granum P.E., Korkeala H. Humans as reservoir for enterotoxin gene-carrying Clostridium perfringens type A. Emerg. Infect. Dis. 2006; 12(11): 1724–9. https://doi.org/10.3201/eid1211.060478

50. Modi N., Wilcox M.H. Evidence for antibiotic induced Clostridium perfringens diarrhoea. J. Clin. Pathol. 2001; 54(10): 748–51. https://doi.org/10.1136/jcp.54.10.748

51. Carman R.J. Clostridium perfringens in spontaneous and antibiotic-associated diarrhoea of man and other animals. Rev. Med. Microbiol. 1997; 8(Suppl. 1): S43–5.

52. Machida Y. An outbreak of enterocolitis due to Clostridium perfringens in a hospital for the severely disabled. Kansenshogaku Zasshi. 1989; 63(4): 4106–6. https://doi.org/10.11150/kansenshogakuzasshi1970.63.410 (in Japanese)

53. Hansen K. Darmbrand — Enteritis Necroticans. Stuttgart: George Thieme; 1949.

54. Murrell T.G., Roth L., Egerton J., Samels J., Walker P.D. Pig-Bel: enteritis necroticans. A study in diagnosis and management. Lancet. 1966; 1(7431): 217–22. https://doi.org/10.1016/s0140-6736(66)90048-1

55. Wisniewski J.A., Rood J.I. The Tcp conjugation system of Clostridium perfringens. Plasmid. 2017; 91: 28–36. https://doi.org/10.1016/j.plasmid.2017.03.001

56. Li J., Adams B., Bannam T. , Mijmoto K., et al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013; 77(2): 208–233. https://doi.org/10.1128/MMBR.00062-12

57. Kiu R., Brown J., Bedwell H., Leclaire1 C., et al. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Animal Microbiome. 2019;(1):12. https://doi.org/10.1186/s42523-019-0015-1.

58. Li J., Freedman J.C., Evans D.R., McClane B.A. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect. Immun. 2017; 85(3): e00855-16. https://doi.org/10.1128/iai.00855-16

59. Gilbert R.J. Cholesterol-dependent cytolysins. Adv. Exp. Med. Biol. 2010; 677: 56–66. https://doi.org/10.1007/978-1-4419-6327-7_5

60. Llanco LA., Nakano V., Avila-Campos M.J. Sialidase production and genetic diversity in Clostridium perfringens type A isolated from chicken with necrotic enteritis in Brazil. Curr. Microbiol. 2015; 70(3): 330–7. https://doi.org/10.1007/s00284-014-0722-5

61. Li J., McClane B.A. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 using sialyated host macromolecules (Mucin) or Caco-2 cells. Infect. Immun. 2018; 86(2):e00547-17. https://doi.org/10.1128/iai.00547-17

62. Kiu R., Caim S., Alexander S., Pachori P., Hall L.J. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front. Microbiol. 2017; 8; 2485. https://doi.org/10.3389/fmicb.2017.02485

63. Kiu R., Caim S., Painset A., Pickard D., Swift C., Dougan G., et al. Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in England and Wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids. Microb. Genom. 2019; 5(10): e000297. https://doi.org/10.1099/mgen.0.000297