Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 73-83

Гетерогенность в изогенных популяциях бактерий и современные технологии клеточного фенотипирования

Андрюков Б. Г., Тимченко Н. Ф., Ляпун И. Н., Бынина М. П., Матосова Е. В.

https://doi.org/10.36233/0372-9311-33

Аннотация

В рамках современной микробиологической парадигмы колонии генетически идентичных микроорганизмов рассматриваются как биосоциальные системы, состоящие из нескольких гетерогенных клональных кластеров клеток (фенотипов бактерий), которые по-разному реагируют на изменения в окружающей среде. За последние десятилетия фенотипическая гетерогенность обнаружена во всех изогенных популяциях патогенных бактерий. Она обеспечивает избирательное преимущество клеточных фенотипов при изменениях физико-химических параметров среды обитания и конкурентном взаимодействии с другими микроорганизмами. Установлено, что данной адаптационной стратегией бактерий управляют разнообразные механизмы вне- и внутриклеточного генеза. Гетерогенность в бактериальных сообществах имеет большое значение для выживания патогенных бактерий в организме-хозяине, прогрессирования и персистенции инфекций, а также снижения эффективности антибиотикотерапии. Современный спектр аналитических инструментов для изучения клеточного фенотипирования представлен как методами оптической визуализации и качественной структурной характеристики одиночных клеток, так и омиксными технологиями количественного анализа и мониторинга молекулярных внутриклеточных процессов. Эти разнообразные инструменты позволяют не только выявлять и модулировать фенотипическую гетерогенность в изогенных популяциях бактерий, но и оценивать функциональную значимость клеточных фенотипов для развития инфекционного процесса. Целью обзора является интеграция современных представлений о гетерогенности в изогенных популяциях бактерий с акцентом на представлении современных аналитических технологий оценки и мониторинга фенотипирования одиночных клеток.
Список литературы

1. Oleskin A.V., Botvinko I.V., Tsavkelova E.A. Colonial organization and intercellular communication in microorganisms. Microbiology (Mikrobiologiya). 2000; 69(3): 249–65. https://doi.org/10.1007/BF02756730

2. Магданова Л.А., Голясная Н.В. Гетерогенность как адаптивное свойство бактериальной популяции. Микробиология. 2013; 82(1): 3–13. https://doi.org/10.7868/S0026365613010072

3. Sánchez-Romero M.A., Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc. Natl. Acad. Sci. USA. 2014; 111(1): 355–60. https://doi.org/10.1073/pnas.1316084111

4. Heyse J., Buysschaert B., Props R., Rubbens P., Skirtach A.G., Waegeman W., et al. Coculturing bacteria leads to reduced phenotypic heterogeneities. Appl. Environ. Microbiol. 2019; 85(8): e02814–18. https://doi.org/10.1128/AEM.02814-18

5. Jeanson S., Floury J., Gagnaire V., Lortal S., Thierry A. Bacterial colonies in solid media and foods: a review on their growth and interactions with the micro-environment. Front. Microbiol. 2015; 6: 1284. https://doi.org/10.3389/fmicb.2015.01284

6. Ryall B., Eydallin G., Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol. Mol. Biol. Rev. 2012; 76(3): 597–25. https://doi.org/10.1128/MMBR.05028-11

7. Dhar N., McKinney J.D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 2007; 10(1): 30–8. https://doi.org/10.1016/J.MIB.2006.12.007

8. Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 2015; 13(8): 497–08. https://doi.org/10.1038/nrmicro3491

9. Davis K.M., Isberg R.R. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays. 2016; 38(8): 782–90. https://doi.org/10.1002/bies.201500121

10. González-Cabaleiro R., Mitchell A.M., Smith W., Wipat A., Ofiteru I.D. Heterogeneity in pure microbial systems: experimental measurements and modeling. Front. Microbiol. 2017; 8: 1813. https://doi.org/10.3389/fmicb.2017.01813

11. Tsimring L.S. Noise in biology. Reports. Prog. Phys. 2014; 77(2): 26601. https://doi.org/10.1093/nar/gkw273

12. Li G.W., Xie X.S. Central dogma at the single-molecule level in living cells. Nature. 2011; 475(7356): 308–15. https://doi.org/10.1038/nature10315

13. Govers S.K., Adam A., Blockeel H., Aertsen A. Rapid phenotypic individualization of bacterial sister cells. Sci. Rep. 2017; 7(1): 1–9. https://doi.org/10.1038/s41598-017-08660-0

14. Heins A.L., Johanson T., Han S., Lundin L., Carlquist M., Gernaey K.V., et al. A quantitative flow cytometry to understand population heterogeneity in response to changes in substrate availability in Escherichia coli and Saccharomyces cerevisiae chemostats. Front. Bioeng. Biotechnol. 2019; 7: 187. https://doi.org/10.3389/fbioe.2019.00187

15. Lewis K. Persister cells. Annu. Rev. Microbiol. 2010; 64: 357–72. https://doi.org/10.1146/annurev.micro.112408.134306

16. Dorobantu L.S., Bhattacharjee S., Foght J.M., Gray M.R. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir. 2008; 24(9): 4944–51. https://doi.org/10.1021/la7035295

17. Cao H., Kuipers O.P. Influence of global gene regulatory networks on single cell heterogeneity of green fluorescent protein production in Bacillus subtilis. Microb. Cell. Fact. 2018; 17(1): 134. https://doi.org/10.1186/s12934-018-0985-9

18. Stracy M., Uphoff S., Garza de Leon F., Kapanidis A.N. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett. 2014; 588(19): 3585–94. https://doi.org/10.1016/j.febslet.2014.05.026

19. Helaine S., Cheverton A.M., Watson K.G., Faure L.M., Matthews S.A., Holden D.W. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014; 343(6167): 204–08. https://doi.org/10.1126/science.1244705

20. Ambriz-Avina V., Contreras-Garduno J.A., Pedraza-Reyes M. Applications of flow cytometry to characterize bacterial physiological responses. Biomed. Res. Int. 2014; 2014: 461941. https://doi.org/10.1155/2014/461941

21. Burdikova Z., Svindrych Z., Pala J., Hickey C.D., Wilkinson M.G., Panek J., et al. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging. Front. Microbiol. 2015; 6: 183. https://doi.org/10.3389/fmicb.2015.00183

22. Han Y., Zhang F. Heterogeneity coordinates bacterial multigene expression in single cells. PLoS Comput. Biol. 2020; 16(1): e1007643. https://doi.org/10.1371/journal.pcbi.1007643

23. Casadesús J., Low D.A. Programmed heterogeneity: epigenetic mechanisms in bacteria. J. Biol. Chem. 2013; 288(20): 13929–35. https://doi.org/10.1074/jbc.R113.472274

24. Андрюков Б.Г., Сомова Л.М., Матосова Е.В., Ляпун И.Н. Фенотипическая пластичность бактерий как стратегия резистентности и объект современных антимикробных технологий (обзор). Современные технологии в медицине. 2019; 11(2): 164–82. http://doi.org/10.17691/stm2019.11.2.22

25. Brehm-Stecher B.F., Johnson E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 2004; 68(3): 538–59. https://doi.org/10.1128/MMBR.68.3.538-559.2004

26. Fritzsch F.S., Dusny C., Frick O., Schmid A. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu. Rev. Chem. Biomol. Eng. 2012; 3: 129–55. https://doi.org/10.1146/annurev-chembioeng-062011-081056

27. García-Timermans C., Rubbens P., Heyse J., Kerckhof F.M., Props R., Skirtach A.G., et al. Discriminating bacterial phenotypes at the population and single-cell level: a comparison of flow cytometry and raman spectroscopy fingerprinting. Cytometry A. 2020; 97(7): 713–26. https://doi.org/10.1002/cyto.a.23952

28. Ceuppens S., Boon N., Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 2013; 84(3): 433–50. https://doi.org/10.1111/1574-6941.12110

29. Stewart M.K., Cummings L.A., Johnson M.L., Berezow A.B., Cookson B.T. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc. Natl. Acad. Sci. USA. 2011; 108(51): 20742–7. https://doi.org/10.1073/pnas.1108963108

30. Heins A.L., Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess. Biosyst. Eng. 2018; 41(7): 889–16. https://doi.org/10.1007/s00449-018-1922-3

31. Xie X.S., Choi P.J., Li G.W., Lee N.K., Lia G. Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys. 2008; 37: 417–44. https://doi.org/10.1146/annurev.biophys.37.092607.174640

32. Hinterdorfer P., Garcia-Parajo M.F., Dufrêne Y.F. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc. Chem. Res. 2012; 45(3): 327–36. https://doi.org/10.1021/ar2001167

33. Skinner S.O., Sepúlveda L.A., Xu H., Golding I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 2013; 8(6): 1100–13. https://doi.org/10.1038/nprot.2013.066

34. Manina G., Dhar N., McKinney J.D. Stress and host immunity amplify Мycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell. Host. Microbe. 2015; 17(1): 32–46. https://doi.org/10.1016/j.chom.2014.11.016

35. Arbel-Goren R., Shapira Y., Stavans J. Method for labeling transcripts in individual Escherichia coli cells for single-molecule fluorescence in situ hybridization experiments. J. Vis. Exp. 2017; (130): 56600. https://doi.org/10.3791/56600

36. Read D.S., Woodcock D.J., Strachan N.J.C., Forbes K.J., Colles F.M., Maiden M.C.J., et al. Evidence for phenotypic plasticity among multihost Campylobacter jejuni and C. coli lineages, obtained using ribosomal multilocus sequence typing and Raman spectroscopy. Appl. Environ. Microbiol. 2013; 79(3): 965–73. https://doi.org/10.1128/AEM.02521-12

37. van de Vossenberg J., Tervahauta H., Maquelin K., Blokker-Koopmans C.H.W., Uytewaal-Aarts M., van der Kooij D., et al. Identification of bacteria in drinking water with Raman. Anal. Methods. 2013; 5(11): 2679–87. https://doi.org/10.1039/c3ay40289d

38. Davey H.M. Prospects for the automation of analysis and interpretation of flow cytometric data. Cytometry A. 2010; 77(1): 3–5. https://doi.org/10.1002/cyto.a.20835

39. Davey H.M. Flow cytometric techniques for the detection of microorganisms. Methods. Cell. Sci. 2002; 24(1-3): 91–7. https://doi.org/10.1023/A:1024106317540

40. Андрюков Б.Г., Карпенко А.А., Матосова Е.В., Ляпун И.Н. Рамановская спектроскопия — современная диагностическая технология для изучения и индикации возбудителей инфекций (обзор). Современные технологии в медицине. 2019; 11(4): 161–74. http://doi.org/10.17691/stm2019.11.4.19

41. Wharfe E.S., Jarvis R.M., Winder C.L., Whiteley A.S., Goodacre R. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol. Environ. Microbiol. 2010; 12(12): 3253–63. https://doi.org/10.1111/j.1462-2920.2010.02300.x

42. Shukla S., Bajpai V.K. Visual demonstration of transmission electron microscopy for intracellular observation of a single bacterial cell. Bangladesh J. Pharmacol. 2017; 12(1): 23–7. https://doi.org/10.3329/bjp.v12i1.31390

43. Syal K., Wang W., Shan X., Wang S., Chen H.Y., Tao N. Plasmonic imaging of protein interactions with single bacterial cells. Biosens. Bioelectron. 2015; 63: 131–7. https://doi.org/10.1016/j.bios.2014.06.069

44. Peterson A.W., Halter M., Tona A., Plant A.L., Elliott J.T. Mass measurements of focal adhesions in single cells using high resolution surface plasmon resonance microscopy. Proc. SPIE Int. Soc. Opt. Eng. 2018; 10509: 1050905. https://doi.org/10.1117/12.2290776

45. Righi V., Constantinou C., Kesarwani M., Rahme L.G., Tzika A.A. Effects of a small, volatile bacterial molecule on Pseudomonas aeruginosa bacteria using whole cell high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and genomics. Int. J. Mol. Med. 2018; 42(4): 2129–36. https://doi.org/10.3892/ijmm.2018.3760

46. Zhou X.L., Yang Y., Wang S., Liu X.W. Surface plasmon resonance microscopy: from single molecule sensing to single cell imaging. Angew. Chem. Int. Ed. Engl. 2020; 59(5): 1776–85. https://doi.org/10.1002/anie.201908806

47. Elowitz M.B., Levine A.J., Siggia E.D., Swain P.S. Stochastic gene expression in a single cell. Science. 2002; 297(5584): 1183–6. https://doi.org/10.1126/science.1070919

48. Liu Y., Singh A.K. Microfluidic platforms for single cell protein analysis. J. Lab. Autom. 2013; 18(6): 446–54. https://doi.org/10.1177/22110-68213-494389

49. Cho S., Cho Y., Lee S., Kim J., Yum H., Kim S.C., et al. Current challenges in bacterial transcriptomics. Genomics. Inform. 2013; 11(2): 76–82. https://doi.org/10.5808/GI.2013.11.2.76

50. Shahrezaei V., Marguerat S. Connecting growth with gene expression: of noise and numbers. Curr. Opin. Microbiol. 2015; 25: 127–35. https://doi.org/10.1016/j.mib.2015.05.012

51. Schröter L., Dersch P. Phenotypic diversification of microbial pathogens ‒ cooperating and preparing for the future. J. Mol. Biol. 2019; 431(23): 4645–55. https://doi.org/10.1016/j.jmb.2019.06.024

52. Weigel W.A., Dersch P. Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect. 2018; 20(9-10): 570–7. https://doi.org/10.1016/j.micinf.2018.01.008

53. Mortier J., Tadesse W., Govers S.K., Aertsen A. Stress-induced protein aggregates shape population heterogeneity in bacteria. Curr. Genet. 2019; 65(4): 865–9. https://doi.org/10.1007/s00294-019-00947-1

54. Henry T.C., Brynildsen M.P. Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Sci. Rep. 2016; 6: 25100. https://doi.org/10.1038/srep25100

55. Binder D., Drepper T., Jaeger K.E., Delvigne F., Wiechert W., Kohlheyer D., et al. Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab. Eng. 2017; 42: 145–56. https://doi.org/10.1016/j.ymben.2017.06.009

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 73-83

Heterogeneity in isogenic bacteria populations and modern technologies of cell phenotyping

Andryukov B. G., Timchenko N. F., Lyapun I. N., Bynina M. P., Matosova E. V.

https://doi.org/10.36233/0372-9311-33

Abstract

In the framework of the modern microbiological paradigm, colonies of genetically identical microorganisms are considered as biosocial systems consisting of several heterogeneous clonal cell clusters (bacterial phenotypes) that respond differently to changes in the environment. Phenotypic heterogeneity was found in recent decades in all isogenic populations of pathogenic bacteria. Such heterogeneity provides a selective advantage of cellular phenotypes with changes in the physicochemical parameters of the environment and competitive interaction with other microorganisms. Heterogeneity in bacterial communities is of great importance for the survival of pathogenic bacteria in the host organism, the progression and persistence of infections, as well as the decrease in the effectiveness of antibiotic therapy. The modern spectrum of analytical tools for studying cellular phenotyping is presented both by optical imaging methods and qualitative structural characteristics of single cells, and by omix technologies of quantitative analysis and monitoring of molecular intracellular processes. These diverse tools make it possible not only to identify and modulate phenotypic heterogeneity in isogenic bacterial populations, but also to evaluate the functional significance of cellular phenotypes in the development of the infectious process. The aim of the review is the integration of modern concepts of heterogeneity in isogenic bacterial populations, with an emphasis on the presentation of modern analytical technologies for assessing and monitoring phenotypic typing of single cells.
References

1. Oleskin A.V., Botvinko I.V., Tsavkelova E.A. Colonial organization and intercellular communication in microorganisms. Microbiology (Mikrobiologiya). 2000; 69(3): 249–65. https://doi.org/10.1007/BF02756730

2. Magdanova L.A., Golyasnaya N.V. Geterogennost' kak adaptivnoe svoistvo bakterial'noi populyatsii. Mikrobiologiya. 2013; 82(1): 3–13. https://doi.org/10.7868/S0026365613010072

3. Sánchez-Romero M.A., Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc. Natl. Acad. Sci. USA. 2014; 111(1): 355–60. https://doi.org/10.1073/pnas.1316084111

4. Heyse J., Buysschaert B., Props R., Rubbens P., Skirtach A.G., Waegeman W., et al. Coculturing bacteria leads to reduced phenotypic heterogeneities. Appl. Environ. Microbiol. 2019; 85(8): e02814–18. https://doi.org/10.1128/AEM.02814-18

5. Jeanson S., Floury J., Gagnaire V., Lortal S., Thierry A. Bacterial colonies in solid media and foods: a review on their growth and interactions with the micro-environment. Front. Microbiol. 2015; 6: 1284. https://doi.org/10.3389/fmicb.2015.01284

6. Ryall B., Eydallin G., Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol. Mol. Biol. Rev. 2012; 76(3): 597–25. https://doi.org/10.1128/MMBR.05028-11

7. Dhar N., McKinney J.D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 2007; 10(1): 30–8. https://doi.org/10.1016/J.MIB.2006.12.007

8. Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 2015; 13(8): 497–08. https://doi.org/10.1038/nrmicro3491

9. Davis K.M., Isberg R.R. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays. 2016; 38(8): 782–90. https://doi.org/10.1002/bies.201500121

10. González-Cabaleiro R., Mitchell A.M., Smith W., Wipat A., Ofiteru I.D. Heterogeneity in pure microbial systems: experimental measurements and modeling. Front. Microbiol. 2017; 8: 1813. https://doi.org/10.3389/fmicb.2017.01813

11. Tsimring L.S. Noise in biology. Reports. Prog. Phys. 2014; 77(2): 26601. https://doi.org/10.1093/nar/gkw273

12. Li G.W., Xie X.S. Central dogma at the single-molecule level in living cells. Nature. 2011; 475(7356): 308–15. https://doi.org/10.1038/nature10315

13. Govers S.K., Adam A., Blockeel H., Aertsen A. Rapid phenotypic individualization of bacterial sister cells. Sci. Rep. 2017; 7(1): 1–9. https://doi.org/10.1038/s41598-017-08660-0

14. Heins A.L., Johanson T., Han S., Lundin L., Carlquist M., Gernaey K.V., et al. A quantitative flow cytometry to understand population heterogeneity in response to changes in substrate availability in Escherichia coli and Saccharomyces cerevisiae chemostats. Front. Bioeng. Biotechnol. 2019; 7: 187. https://doi.org/10.3389/fbioe.2019.00187

15. Lewis K. Persister cells. Annu. Rev. Microbiol. 2010; 64: 357–72. https://doi.org/10.1146/annurev.micro.112408.134306

16. Dorobantu L.S., Bhattacharjee S., Foght J.M., Gray M.R. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir. 2008; 24(9): 4944–51. https://doi.org/10.1021/la7035295

17. Cao H., Kuipers O.P. Influence of global gene regulatory networks on single cell heterogeneity of green fluorescent protein production in Bacillus subtilis. Microb. Cell. Fact. 2018; 17(1): 134. https://doi.org/10.1186/s12934-018-0985-9

18. Stracy M., Uphoff S., Garza de Leon F., Kapanidis A.N. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett. 2014; 588(19): 3585–94. https://doi.org/10.1016/j.febslet.2014.05.026

19. Helaine S., Cheverton A.M., Watson K.G., Faure L.M., Matthews S.A., Holden D.W. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014; 343(6167): 204–08. https://doi.org/10.1126/science.1244705

20. Ambriz-Avina V., Contreras-Garduno J.A., Pedraza-Reyes M. Applications of flow cytometry to characterize bacterial physiological responses. Biomed. Res. Int. 2014; 2014: 461941. https://doi.org/10.1155/2014/461941

21. Burdikova Z., Svindrych Z., Pala J., Hickey C.D., Wilkinson M.G., Panek J., et al. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging. Front. Microbiol. 2015; 6: 183. https://doi.org/10.3389/fmicb.2015.00183

22. Han Y., Zhang F. Heterogeneity coordinates bacterial multigene expression in single cells. PLoS Comput. Biol. 2020; 16(1): e1007643. https://doi.org/10.1371/journal.pcbi.1007643

23. Casadesús J., Low D.A. Programmed heterogeneity: epigenetic mechanisms in bacteria. J. Biol. Chem. 2013; 288(20): 13929–35. https://doi.org/10.1074/jbc.R113.472274

24. Andryukov B.G., Somova L.M., Matosova E.V., Lyapun I.N. Fenotipicheskaya plastichnost' bakterii kak strategiya rezistentnosti i ob\"ekt sovremennykh antimikrobnykh tekhnologii (obzor). Sovremennye tekhnologii v meditsine. 2019; 11(2): 164–82. http://doi.org/10.17691/stm2019.11.2.22

25. Brehm-Stecher B.F., Johnson E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 2004; 68(3): 538–59. https://doi.org/10.1128/MMBR.68.3.538-559.2004

26. Fritzsch F.S., Dusny C., Frick O., Schmid A. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu. Rev. Chem. Biomol. Eng. 2012; 3: 129–55. https://doi.org/10.1146/annurev-chembioeng-062011-081056

27. García-Timermans C., Rubbens P., Heyse J., Kerckhof F.M., Props R., Skirtach A.G., et al. Discriminating bacterial phenotypes at the population and single-cell level: a comparison of flow cytometry and raman spectroscopy fingerprinting. Cytometry A. 2020; 97(7): 713–26. https://doi.org/10.1002/cyto.a.23952

28. Ceuppens S., Boon N., Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 2013; 84(3): 433–50. https://doi.org/10.1111/1574-6941.12110

29. Stewart M.K., Cummings L.A., Johnson M.L., Berezow A.B., Cookson B.T. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc. Natl. Acad. Sci. USA. 2011; 108(51): 20742–7. https://doi.org/10.1073/pnas.1108963108

30. Heins A.L., Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess. Biosyst. Eng. 2018; 41(7): 889–16. https://doi.org/10.1007/s00449-018-1922-3

31. Xie X.S., Choi P.J., Li G.W., Lee N.K., Lia G. Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys. 2008; 37: 417–44. https://doi.org/10.1146/annurev.biophys.37.092607.174640

32. Hinterdorfer P., Garcia-Parajo M.F., Dufrêne Y.F. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc. Chem. Res. 2012; 45(3): 327–36. https://doi.org/10.1021/ar2001167

33. Skinner S.O., Sepúlveda L.A., Xu H., Golding I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 2013; 8(6): 1100–13. https://doi.org/10.1038/nprot.2013.066

34. Manina G., Dhar N., McKinney J.D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell. Host. Microbe. 2015; 17(1): 32–46. https://doi.org/10.1016/j.chom.2014.11.016

35. Arbel-Goren R., Shapira Y., Stavans J. Method for labeling transcripts in individual Escherichia coli cells for single-molecule fluorescence in situ hybridization experiments. J. Vis. Exp. 2017; (130): 56600. https://doi.org/10.3791/56600

36. Read D.S., Woodcock D.J., Strachan N.J.C., Forbes K.J., Colles F.M., Maiden M.C.J., et al. Evidence for phenotypic plasticity among multihost Campylobacter jejuni and C. coli lineages, obtained using ribosomal multilocus sequence typing and Raman spectroscopy. Appl. Environ. Microbiol. 2013; 79(3): 965–73. https://doi.org/10.1128/AEM.02521-12

37. van de Vossenberg J., Tervahauta H., Maquelin K., Blokker-Koopmans C.H.W., Uytewaal-Aarts M., van der Kooij D., et al. Identification of bacteria in drinking water with Raman. Anal. Methods. 2013; 5(11): 2679–87. https://doi.org/10.1039/c3ay40289d

38. Davey H.M. Prospects for the automation of analysis and interpretation of flow cytometric data. Cytometry A. 2010; 77(1): 3–5. https://doi.org/10.1002/cyto.a.20835

39. Davey H.M. Flow cytometric techniques for the detection of microorganisms. Methods. Cell. Sci. 2002; 24(1-3): 91–7. https://doi.org/10.1023/A:1024106317540

40. Andryukov B.G., Karpenko A.A., Matosova E.V., Lyapun I.N. Ramanovskaya spektroskopiya — sovremennaya diagnosticheskaya tekhnologiya dlya izucheniya i indikatsii vozbuditelei infektsii (obzor). Sovremennye tekhnologii v meditsine. 2019; 11(4): 161–74. http://doi.org/10.17691/stm2019.11.4.19

41. Wharfe E.S., Jarvis R.M., Winder C.L., Whiteley A.S., Goodacre R. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol. Environ. Microbiol. 2010; 12(12): 3253–63. https://doi.org/10.1111/j.1462-2920.2010.02300.x

42. Shukla S., Bajpai V.K. Visual demonstration of transmission electron microscopy for intracellular observation of a single bacterial cell. Bangladesh J. Pharmacol. 2017; 12(1): 23–7. https://doi.org/10.3329/bjp.v12i1.31390

43. Syal K., Wang W., Shan X., Wang S., Chen H.Y., Tao N. Plasmonic imaging of protein interactions with single bacterial cells. Biosens. Bioelectron. 2015; 63: 131–7. https://doi.org/10.1016/j.bios.2014.06.069

44. Peterson A.W., Halter M., Tona A., Plant A.L., Elliott J.T. Mass measurements of focal adhesions in single cells using high resolution surface plasmon resonance microscopy. Proc. SPIE Int. Soc. Opt. Eng. 2018; 10509: 1050905. https://doi.org/10.1117/12.2290776

45. Righi V., Constantinou C., Kesarwani M., Rahme L.G., Tzika A.A. Effects of a small, volatile bacterial molecule on Pseudomonas aeruginosa bacteria using whole cell high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and genomics. Int. J. Mol. Med. 2018; 42(4): 2129–36. https://doi.org/10.3892/ijmm.2018.3760

46. Zhou X.L., Yang Y., Wang S., Liu X.W. Surface plasmon resonance microscopy: from single molecule sensing to single cell imaging. Angew. Chem. Int. Ed. Engl. 2020; 59(5): 1776–85. https://doi.org/10.1002/anie.201908806

47. Elowitz M.B., Levine A.J., Siggia E.D., Swain P.S. Stochastic gene expression in a single cell. Science. 2002; 297(5584): 1183–6. https://doi.org/10.1126/science.1070919

48. Liu Y., Singh A.K. Microfluidic platforms for single cell protein analysis. J. Lab. Autom. 2013; 18(6): 446–54. https://doi.org/10.1177/22110-68213-494389

49. Cho S., Cho Y., Lee S., Kim J., Yum H., Kim S.C., et al. Current challenges in bacterial transcriptomics. Genomics. Inform. 2013; 11(2): 76–82. https://doi.org/10.5808/GI.2013.11.2.76

50. Shahrezaei V., Marguerat S. Connecting growth with gene expression: of noise and numbers. Curr. Opin. Microbiol. 2015; 25: 127–35. https://doi.org/10.1016/j.mib.2015.05.012

51. Schröter L., Dersch P. Phenotypic diversification of microbial pathogens ‒ cooperating and preparing for the future. J. Mol. Biol. 2019; 431(23): 4645–55. https://doi.org/10.1016/j.jmb.2019.06.024

52. Weigel W.A., Dersch P. Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect. 2018; 20(9-10): 570–7. https://doi.org/10.1016/j.micinf.2018.01.008

53. Mortier J., Tadesse W., Govers S.K., Aertsen A. Stress-induced protein aggregates shape population heterogeneity in bacteria. Curr. Genet. 2019; 65(4): 865–9. https://doi.org/10.1007/s00294-019-00947-1

54. Henry T.C., Brynildsen M.P. Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Sci. Rep. 2016; 6: 25100. https://doi.org/10.1038/srep25100

55. Binder D., Drepper T., Jaeger K.E., Delvigne F., Wiechert W., Kohlheyer D., et al. Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab. Eng. 2017; 42: 145–56. https://doi.org/10.1016/j.ymben.2017.06.009