Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 65-72

Нарушения кишечной микробиоты при расстройствах аутистического спектра: новые горизонты в поиске патогенетических подходов к терапии. Часть 1. Особенности кишечной микробиоты при расстройствах аутистического спектра

Благонравова А. С., Жиляева Т. В., Квашнина Д. В.

https://doi.org/10.36233/0372-9311-62

Аннотация

Первая часть обзора литературы, посвященного роли нарушений кишечной микробиоты в патогенезе расстройств аутистического спектра (РАС), включает последние опубликованные данные об особенностях количественного и качественного состава кишечной микробиоты у пациентов с аутизмом. Показано, что при РАС обнаружено избыточное присутствие Clostridium spp., представлены данные, свидетельствующие о возможном участии этих бактерий в развитии симптомов аутизма. Приведены противоречивые результаты исследований об увеличении численности ряда других патогенных бактерий и, наоборот, снижении количества бактерий, необходимых для поддержания нормального функционирования кишечника и организма хозяина в целом. Сообщается о возможной роли Candida albicans при РАС, требующей дальнейшего изучения. Обсуждаются возможные причины противоречий в результатах исследований, посвященных данной теме.
Список литературы

1. McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014; 133(5): 872–83. https://doi.org/10.1542/peds.2013-3995

2. Chaidez V., Hansen R.L., Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 2014; 44(5): 1117–27. https://doi.org/10.1007/s10803-013-1973-x

3. Wang M., Wan J., Rong H., He F., Wang H., Zhou J., et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems. 2019; 4(1): e00321-18. https://doi.org/10.1128/mSystems.00321-18

4. De Theije C.G., Wu J., da Silva S.L., Kamphuis P.J., Garssen J., Korte S.M. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol. 2011; 668(Suppl. 1): S70–80. https://doi.org/10.1016/j.ejphar.2011.07.013

5. Rose D.R., Yang H., Serena G., Sturgeon C., Ma B., Careaga M., et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun. 2018; 70: 354–68. https://doi.org/10.1016/j.bbi.2018.03.025

6. Adams J.B., Audhya T., McDonough-Means S., Rubin R.A., Quig D., Geis E., et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr. Metab. (Lond.). 2011; 8(1): 34. https://doi.org/10.1186/1743-7075-8-34

7. Krajmalnik-Brown R., Lozupone C., Kang D.W., Adams J.B. Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microb. Ecol. Health Dis. 2015; 26: 26914. https://doi.org/10.3402/mehd.v26.26914

8. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopment disorders. Cell. 2013; 155(7): 1451–63. https://doi.org/10.1016/j.cell.2013.11.024

9. Niehus R., Lord C. Early medical history of children with autism spectrum disorders. J. Dev. Behav. Pediatr. 2006; 27(2): S120–7. https://doi.org/10.1097/00004703-200604002-00010

10. Willing B.P., Russell S.L., Finlay B.B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011; 9(4): 233–43. https://doi.org/10.1038/nrmicro2536

11. Sekirov I., Russell S.L., Antunes C.M., Finlay B.B. Gut microbiomes in health and disease. Physiol. Rev. 2010; 90(3): 859–904. https://doi.org/10.1152/physrev.00045.2009

12. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015; 6(3): 207–13. https://doi.org/10.1080/19490976.2015.1035855

13. Coretti L., Paparo L., Riccio M.P., Amato F., Cuomo M., Natale A., et al. Gut microbiota features in young children with autism spectrum disorders. Front. Microbiol. 2018; 9: 3146. https://doi.org/10.3389/fmicb.2018.03146

14. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280

15. Fattorusso A., Di Genova L., Dell’Isola G., Mencaroni E., Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019; 11(3): 521. https://doi.org/10.3390/nu11030521

16. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010; 16(4): 444–53. https://doi.org/10.1016/j.anaerobe.2010.06.008

17. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–31. https://doi.org/10.1016/j.anaerobe.2017.12.007

18. Kang D.W., Park J.G., Ilhan Z.E., Wallstrom G., LaBaer J., Adams J.B., et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013; 8(7): e68322. https://doi.org/10.1371/journal.pone.0068322

19. Pulikkan J., Maji A., Dhakan D.B., Saxena R., Mohan B., Anto M.M., et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb. Ecol. 2018; 76(4): 1102–14. https://doi.org/10.1007/s00248-018-1176-2

20. Son J.S., Zheng L.J., Rowehl L.M., Tian X., Zhang Y., Zhu W., et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the Simons Simplex collection. PLoS One. 2015; 10(10): e0137725. https://doi.org/10.1371/journal.pone.0137725

21. Finegold S.M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses. 2011; 77(2): 270–4. https://doi.org/10.1016/j.mehy.2011.04.032

22. Mangiola F., Ianiro G., Franceschi F., et al. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016; (22): 361–368. https://doi.org/10.3748/wjg.v22.i1.361

23. Finegold S.M., Molitoris D., Song Y., Liu C., Vaisanen M.L., Bolte E., et al. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 2002; 35(Suppl. 1): S6–16. https://doi.org/10.1086/341914

24. Berding K., Donovan S.M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 2018; 12: 515. https://doi.org/10.3389/fnins.2018.00515

25. De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D.I., et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013; 8(10): e76993. https://doi.org/10.1371/journal.pone.0076993

26. Ma B., Liang J., Dai M., Wang J., Luo J., Zhang Z., et al. Altered gut microbiota in Сhinese children with autism spectrum disorders. Front. Cell Infect. Microbiol. 2019; 9: 40. https://doi.org/10.3389/fcimb.2019.00040

27. Plaza-Diaz J., Gomez-Fernandez A., Chueca N., Torre-Aguilar M.J., Gil A., Perez-Navero J.L., et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): e337. https://doi.org/10.3390/nu11020337

28. Song Y., Liu C., Finegold S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 2004; 70(11): 6459–65. https://doi.org/10.1128/AEM.70.11.6459-6465.2004

29. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015; 138: 179–87. https://doi.org/10.1016/j.physbeh.2014.10.033

30. Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005; 54(Pt. 10): 987–91. https://doi.org/10.1099/jmm.0.46101-0

31. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24. https://doi.org/10.1186/s40168-017-0242-1

32. Williams B.L., Hornig M., Buie T., Bauman M.L., Cho Paik M., Wick I., et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011; 6(9): e24585. https://doi.org/10.1371/journal.pone.0024585

33. Liu S., Li E., Sun Z., Fu D., Duan G., Jiang M., et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 2019; 9(1): 287. https://doi.org/10.1038/s41598-018-36430-z

34. Bolte E.R. Autism and Clostridium tetani. Med. Hypotheses. 1998; 51(2): 133–44. https://doi.org/10.1016/S0306-9877(98)90107-4

35. Ding H.T., Taur Y., Walkup J.T. Gut microbiota and autism: key concepts and findings. J. Autism Dev. Disord. 2017; 47(2): 480–9. https://doi.org/10.1007/s10803-016-2960-9

36. Sandler R.H., Finegold S.M., Bolte E.R., Buchanan C.P., Maxwell A.P., Väisänen M.L., et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 2000; 15(7): 429–35. https://doi.org/10.1177/088307380001500701

37. Yang Y., Tian J., Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018; 194: 111–9. https://doi.org/10.1016/j.lfs.2017.12.027

38. Finegold S.M. Therapy and epidemiology of autism — clostridial spores as key elements. Med. Hypotheses. 2008; 70(3): 508–11. https://doi.org/10.1016/j.mehy.2007.07.019

39. Argou-Cardozo I., Zeidán-Chuliá F. Clostridium bacteria and autism spectrum conditions: a systematic review and hypothetical contribution of environmental glyphosate levels. Med. Sci. (Basel). 2018; 6(2): 29. https://doi.org/10.3390/medsci6020029

40. Qiao Y., Wu M., Feng Y., Zhou Z., Chen L., Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep. 2018; 8(1): 1597. https://doi.org/10.1038/s41598-018-19982-y

41. Zhang M., Ma W., Zhang J., He Y., Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci. Rep. 2018; 8(1): 13981. https://doi.org/10.1038/s41598-018-32219-2

42. Li N., Yang J., Zhang J., Liang C., Wang Y., Chen B., et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics. 2019; 17(1): 26–38. https://doi.org/10.1016/j.gpb.2019.01.002

43. Cryan J.F., Dinan T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012; 13(10): 701–12. https://doi.org/10.1038/nrn3346

44. Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantification, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012; 3(1): e00261-11. https://doi.org/10.1128/mBio.00261-11

45. Hiippala K., Kainulainen V., Kalliomäki M., Arkkila P., Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front. Microbiol. 2016; 7: 1706. https://doi.org/10.3389/fmicb.2016.01706

46. Luna R.A., Oezguen N., Balderas M., Venkatachalam A., Runge J.K., Versalovic J., et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol. 2016; 3(2): 218–30. https://doi.org/10.1016/j.jcmgh.2016.11.008

47. Gondalia S.V., Palombo E.A., Knowles S.R., Cox S.B., Meyer D., Austin D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012; 5(6): 419–27. https://doi.org/10.1002/aur.1253

48. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011; 77(18): 6718–21. https://doi.org/10.1128/AEM.05212-11

49. Plaza-Díaz J., Gómez-Fernández A., Chueca N., Torre-Aguilar M.J., Gil Á., Perez-Navero J.L., et al. Autism Spectrum Disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): 337. https://doi.org/10.3390/nu11020337

50. Averina O.V., Kovtun A.S., Polyakova S.I., Savilova A.M., Rebrikov D.V., Danilenko V.N., et al. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020; 69(4): 558–71. https://doi.org/10.1099/jmm.0.001178

51. Iovene M.R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., et al. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia. 2017; 182(3-4): 349–63. https://doi.org/10.1007/s11046-016-0068-6

52. Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA. 2011; 108(Suppl. 1): 4586–91. https://doi.org/10.1073/pnas.1000097107

53. Bezawada N., Phang T.H., Hold G.L., Hansen R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann. Nutr. Metab. 2020; 76(1): 1–14. https://doi.org/10.1159/000505363

54. Полетаев А.Б., Шендеров Б.А. Аутизм и аутоиммунитет: генетика или эпигенетика? Клиническая патофизиология. 2016; 22(4): 17–25.

55. Poletaev A.B., Shenderov B.A. Autism: Genetics or Epigenetics? ARC Journals of Immunology and Vaccines. 2016; 1(2): 1–7.

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 65-72

Dysbiosis of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Part 1. Features of intestinal microbiota in autism spectrum disorders

Blagonravova A. S., Zhilyaeva T. V., Kvashnina D. V.

https://doi.org/10.36233/0372-9311-62

Abstract

The first part of the literature review on the role of intestinal microbiota dysbiosis in the pathogenesis of autism spectrum disorders (ASD) includes recent data published in the literature on the features of the quantitative and qualitative composition of the intestinal microbiota in patients with autism. It was shown that an excessive presence of Clostridium was detected in ASD, and evidence was presented showing the possible participation of these bacteria in the development of autism symptoms. Contradictory research results on an increase in a number of other pathogenic bacteria and, conversely, a decrease in the number of bacteria necessary to maintain the normal functioning of the intestine and the host organism as a whole are presented. The possible role of Candida albicans in ASD, requiring further study, is reported. Possible causes of contradictions in the results of studies on this topic are discussed.
References

1. McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014; 133(5): 872–83. https://doi.org/10.1542/peds.2013-3995

2. Chaidez V., Hansen R.L., Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 2014; 44(5): 1117–27. https://doi.org/10.1007/s10803-013-1973-x

3. Wang M., Wan J., Rong H., He F., Wang H., Zhou J., et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems. 2019; 4(1): e00321-18. https://doi.org/10.1128/mSystems.00321-18

4. De Theije C.G., Wu J., da Silva S.L., Kamphuis P.J., Garssen J., Korte S.M. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol. 2011; 668(Suppl. 1): S70–80. https://doi.org/10.1016/j.ejphar.2011.07.013

5. Rose D.R., Yang H., Serena G., Sturgeon C., Ma B., Careaga M., et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun. 2018; 70: 354–68. https://doi.org/10.1016/j.bbi.2018.03.025

6. Adams J.B., Audhya T., McDonough-Means S., Rubin R.A., Quig D., Geis E., et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr. Metab. (Lond.). 2011; 8(1): 34. https://doi.org/10.1186/1743-7075-8-34

7. Krajmalnik-Brown R., Lozupone C., Kang D.W., Adams J.B. Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microb. Ecol. Health Dis. 2015; 26: 26914. https://doi.org/10.3402/mehd.v26.26914

8. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopment disorders. Cell. 2013; 155(7): 1451–63. https://doi.org/10.1016/j.cell.2013.11.024

9. Niehus R., Lord C. Early medical history of children with autism spectrum disorders. J. Dev. Behav. Pediatr. 2006; 27(2): S120–7. https://doi.org/10.1097/00004703-200604002-00010

10. Willing B.P., Russell S.L., Finlay B.B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011; 9(4): 233–43. https://doi.org/10.1038/nrmicro2536

11. Sekirov I., Russell S.L., Antunes C.M., Finlay B.B. Gut microbiomes in health and disease. Physiol. Rev. 2010; 90(3): 859–904. https://doi.org/10.1152/physrev.00045.2009

12. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015; 6(3): 207–13. https://doi.org/10.1080/19490976.2015.1035855

13. Coretti L., Paparo L., Riccio M.P., Amato F., Cuomo M., Natale A., et al. Gut microbiota features in young children with autism spectrum disorders. Front. Microbiol. 2018; 9: 3146. https://doi.org/10.3389/fmicb.2018.03146

14. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280

15. Fattorusso A., Di Genova L., Dell’Isola G., Mencaroni E., Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019; 11(3): 521. https://doi.org/10.3390/nu11030521

16. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010; 16(4): 444–53. https://doi.org/10.1016/j.anaerobe.2010.06.008

17. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–31. https://doi.org/10.1016/j.anaerobe.2017.12.007

18. Kang D.W., Park J.G., Ilhan Z.E., Wallstrom G., LaBaer J., Adams J.B., et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013; 8(7): e68322. https://doi.org/10.1371/journal.pone.0068322

19. Pulikkan J., Maji A., Dhakan D.B., Saxena R., Mohan B., Anto M.M., et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb. Ecol. 2018; 76(4): 1102–14. https://doi.org/10.1007/s00248-018-1176-2

20. Son J.S., Zheng L.J., Rowehl L.M., Tian X., Zhang Y., Zhu W., et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the Simons Simplex collection. PLoS One. 2015; 10(10): e0137725. https://doi.org/10.1371/journal.pone.0137725

21. Finegold S.M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses. 2011; 77(2): 270–4. https://doi.org/10.1016/j.mehy.2011.04.032

22. Mangiola F., Ianiro G., Franceschi F., et al. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016; (22): 361–368. https://doi.org/10.3748/wjg.v22.i1.361

23. Finegold S.M., Molitoris D., Song Y., Liu C., Vaisanen M.L., Bolte E., et al. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 2002; 35(Suppl. 1): S6–16. https://doi.org/10.1086/341914

24. Berding K., Donovan S.M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 2018; 12: 515. https://doi.org/10.3389/fnins.2018.00515

25. De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D.I., et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013; 8(10): e76993. https://doi.org/10.1371/journal.pone.0076993

26. Ma B., Liang J., Dai M., Wang J., Luo J., Zhang Z., et al. Altered gut microbiota in Shinese children with autism spectrum disorders. Front. Cell Infect. Microbiol. 2019; 9: 40. https://doi.org/10.3389/fcimb.2019.00040

27. Plaza-Diaz J., Gomez-Fernandez A., Chueca N., Torre-Aguilar M.J., Gil A., Perez-Navero J.L., et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): e337. https://doi.org/10.3390/nu11020337

28. Song Y., Liu C., Finegold S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 2004; 70(11): 6459–65. https://doi.org/10.1128/AEM.70.11.6459-6465.2004

29. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015; 138: 179–87. https://doi.org/10.1016/j.physbeh.2014.10.033

30. Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005; 54(Pt. 10): 987–91. https://doi.org/10.1099/jmm.0.46101-0

31. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24. https://doi.org/10.1186/s40168-017-0242-1

32. Williams B.L., Hornig M., Buie T., Bauman M.L., Cho Paik M., Wick I., et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011; 6(9): e24585. https://doi.org/10.1371/journal.pone.0024585

33. Liu S., Li E., Sun Z., Fu D., Duan G., Jiang M., et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 2019; 9(1): 287. https://doi.org/10.1038/s41598-018-36430-z

34. Bolte E.R. Autism and Clostridium tetani. Med. Hypotheses. 1998; 51(2): 133–44. https://doi.org/10.1016/S0306-9877(98)90107-4

35. Ding H.T., Taur Y., Walkup J.T. Gut microbiota and autism: key concepts and findings. J. Autism Dev. Disord. 2017; 47(2): 480–9. https://doi.org/10.1007/s10803-016-2960-9

36. Sandler R.H., Finegold S.M., Bolte E.R., Buchanan C.P., Maxwell A.P., Väisänen M.L., et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 2000; 15(7): 429–35. https://doi.org/10.1177/088307380001500701

37. Yang Y., Tian J., Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018; 194: 111–9. https://doi.org/10.1016/j.lfs.2017.12.027

38. Finegold S.M. Therapy and epidemiology of autism — clostridial spores as key elements. Med. Hypotheses. 2008; 70(3): 508–11. https://doi.org/10.1016/j.mehy.2007.07.019

39. Argou-Cardozo I., Zeidán-Chuliá F. Clostridium bacteria and autism spectrum conditions: a systematic review and hypothetical contribution of environmental glyphosate levels. Med. Sci. (Basel). 2018; 6(2): 29. https://doi.org/10.3390/medsci6020029

40. Qiao Y., Wu M., Feng Y., Zhou Z., Chen L., Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep. 2018; 8(1): 1597. https://doi.org/10.1038/s41598-018-19982-y

41. Zhang M., Ma W., Zhang J., He Y., Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci. Rep. 2018; 8(1): 13981. https://doi.org/10.1038/s41598-018-32219-2

42. Li N., Yang J., Zhang J., Liang C., Wang Y., Chen B., et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics. 2019; 17(1): 26–38. https://doi.org/10.1016/j.gpb.2019.01.002

43. Cryan J.F., Dinan T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012; 13(10): 701–12. https://doi.org/10.1038/nrn3346

44. Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantification, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012; 3(1): e00261-11. https://doi.org/10.1128/mBio.00261-11

45. Hiippala K., Kainulainen V., Kalliomäki M., Arkkila P., Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front. Microbiol. 2016; 7: 1706. https://doi.org/10.3389/fmicb.2016.01706

46. Luna R.A., Oezguen N., Balderas M., Venkatachalam A., Runge J.K., Versalovic J., et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol. 2016; 3(2): 218–30. https://doi.org/10.1016/j.jcmgh.2016.11.008

47. Gondalia S.V., Palombo E.A., Knowles S.R., Cox S.B., Meyer D., Austin D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012; 5(6): 419–27. https://doi.org/10.1002/aur.1253

48. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011; 77(18): 6718–21. https://doi.org/10.1128/AEM.05212-11

49. Plaza-Díaz J., Gómez-Fernández A., Chueca N., Torre-Aguilar M.J., Gil Á., Perez-Navero J.L., et al. Autism Spectrum Disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): 337. https://doi.org/10.3390/nu11020337

50. Averina O.V., Kovtun A.S., Polyakova S.I., Savilova A.M., Rebrikov D.V., Danilenko V.N., et al. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020; 69(4): 558–71. https://doi.org/10.1099/jmm.0.001178

51. Iovene M.R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., et al. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia. 2017; 182(3-4): 349–63. https://doi.org/10.1007/s11046-016-0068-6

52. Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA. 2011; 108(Suppl. 1): 4586–91. https://doi.org/10.1073/pnas.1000097107

53. Bezawada N., Phang T.H., Hold G.L., Hansen R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann. Nutr. Metab. 2020; 76(1): 1–14. https://doi.org/10.1159/000505363

54. Poletaev A.B., Shenderov B.A. Autizm i autoimmunitet: genetika ili epigenetika? Klinicheskaya patofiziologiya. 2016; 22(4): 17–25.

55. Poletaev A.B., Shenderov B.A. Autism: Genetics or Epigenetics? ARC Journals of Immunology and Vaccines. 2016; 1(2): 1–7.