Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 604-607

Факторы, влияющие на смертность от новой коронавирусной инфекции в разных субъектах Российской Федерации

Гольдштейн Э. М.

https://doi.org/10.36233/0372-9311-2020-97-6-11

Аннотация

Актуальность. Влияние таких факторов, как плотность населения, практика тестирования на SARS-CoV-2 (в совокупности с самоизоляцией/карантином для инфицированных и контактных лиц) и температура воздуха, на распространение и смертность от COVID-19 в разных субъектах РФ недостаточно изучено.

Материалы и методы. Плотность населения в разных субъектах РФ оценивается как количество населения на 1 км 2 земли населенных пунктов; температура оценивается как среднее между температурами в январе и июле; практика тестирования на SARS-CoV-2 оценивается через коэффициент летальности (процент летальных случаев среди всех выявленных случаев COVID-19 с известным исходом (выздоровевших + умерших)) — при более активном тестировании выявляется больше случаев заболевания COVID-19 в легкой и средней форме и коэффициент летальности уменьшается, т.е. коэффициент летальности находится в обратной зависимости от активности тестирования.

Результаты. Корреляция между плотностью населения и уровнем смертности от COVID-19 на 100 тыс. человек в 85 субъектах РФ на 22.11.2020 г. равна 0,53 (0,36; 0,67); корреляция между коэффициентом летальности и уровнем смертности — 0,62 (0,47; 0,74). Результаты линейной регрессии говорят о том, что плотность населения и коэффициент летальности положительно связаны с уровнем смертности от COVID-19 на 100 тыс. человек, а температура воздуха отрицательно связана с уровнем смертности от COVID-19 в 85 субъектах РФ.

Выводы. Более низкая плотность населения, более активное тестирование на SARS-CoV-2 и более высокая температура воздуха способствуют понижению уровня смертности от COVID-19 в разных субъектах РФ. В частности, следует принимать дополнительные меры для повышения уровня тестирования на SARS-CoV-2 среди разных категорий лиц, включая лиц, которые хотят тестироваться по собственной инициативе, лиц, обращающихся за медицинской помощью с симптомами ОРВИ, и контактных лиц для подтвержденных случаев COVID-19.

Список литературы

1. Gudbjartsson D.F., Norddahl G.L., Melsted P., Gunnarsdottir K., Holm H., Eythorsson E., et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020; 383(18): 1724–34. https://doi.org/10.1056/nejmoa2026116

2. Bhadra A., Mukherjee A., Sarkar K. Impact of population density on COVID-19 infected and mortality rate in India. Model. Earth Syst. Environ. 2020; 1–7. https://doi.org/10.1007/s40808-020-00984-7

3. Coskun H., Yildirim N., Gunduz S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total Environ. 2021; 751: 141663. https://doi.org/10.1016/j.scitotenv.2020.141663

4. Rubin D., Huang J., Fisher B.T., Gasparrini A., Tam V., Song L., et al. Association of social distancing, population density, and temperature with the instantaneous reproduction number of SARS-CoV-2 in counties across the United States. JAMA Netw. Open. 2020; 3(7): e2016099. https://doi.org/10.1001/jamanetworkopen.2020.16099

5. Pollán M., Pérez-Gómez B., Pastor-Barriuso R., Oteo J., Hernán M.A., Pérez-Olmeda M., et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020; 396(10250): 535–44. https://doi.org/10.1016/S0140-6736(20)31483-5

6. Mecenas P., Bastos R.T.D.R.M., Vallinoto A.C.R., Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020; 15(9): e0238339. https://doi.org/10.1371/journal.pone.0238339

7. Carson R.T., Carson S.L., Dye T.K., Mayfield S.A., Moyer D.C., Yu C.A., et al. COVID-19's U.S. temperature response profile. MedRxiv. 2020; 2020.11.03.20225581. https://doi.org/10.1101/2020.11.03.20225581

8. Гольдштейн Э.М. Выявляемость, коэффициент летальности и уровень смертности от новой коронавирусной инфекции в разных субъектах Российской Федерации во время и до осенней волны эпидемии. COVID19-PREPRINTS.MICROBE.RU. Препринт. 2020. https://doi.org/10.21055/preprints-3111901

Journal of microbiology, epidemiology and immunobiology. 2020; 97: 604-607

Factors affecting mortality for the novel coronavirus infection in different regions of the Russian Federation

Goldstein E. M.

https://doi.org/10.36233/0372-9311-2020-97-6-11

Abstract

Background. The influence of such factors as population density, practices for testing for the SARS-CoV-2 (combined with quarantine/self-isolation for infected individuals and their contacts) and ambient temperature on the spread of the novel coronavirus infection and related mortality in the 85 different regions of the Russian Federation isn’t well characterized.

Materials and methods. Population density in the different regions of the Russian Federation is measured as the number of persons per square kilometer of settled areas; ambient temperature is measured as the mean for January and July values; practices for testing for SARS-CoV-2 are characterized via case-fatality rates (the percent of deaths among cases with known outcome (recovered + fatal)) — under more active testing for SARSCoV-2, greater numbers of mild/moderate cases of infection are detected, resulting in the decline in case-fatality rates, i.e. the intensity of testing is inversely proportional to the case-fatality rate.

Results. The correlation between population density and rates of mortality for COVID-19 per 100,000 persons on November 22, 2020 in the 85 different regions of the Russian Federation is 0.53 (0.36; 0.67); the correlation between case-fatality rates and rates of mortality for COVID-19 per 100,000 persons on Nov. 22, 2020 in the different regions of the Russian Federation is 0.62 (0.47; 0.74). Results of the linear regression suggest a positive association between population density, as well as case-fatality rates and rates of mortality for COVID-19 in the different regions of Russia, and a negative association between ambient temperature and rates of mortality for the novel coronavirus infection.

Conclusions. Lower population density, more active testing for SARS-CoV-2 and higher ambient temperature are associated with lower rates of mortality for COVID-19. In particular, additional measures should be implemented towards testing of different categories of individuals for SARS-CoV-2, including those seeking testing on their own initiative, those seeking medical help with respiratory symptoms, and contacts of confirmed COVID-19 cases.

References

1. Gudbjartsson D.F., Norddahl G.L., Melsted P., Gunnarsdottir K., Holm H., Eythorsson E., et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020; 383(18): 1724–34. https://doi.org/10.1056/nejmoa2026116

2. Bhadra A., Mukherjee A., Sarkar K. Impact of population density on COVID-19 infected and mortality rate in India. Model. Earth Syst. Environ. 2020; 1–7. https://doi.org/10.1007/s40808-020-00984-7

3. Coskun H., Yildirim N., Gunduz S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total Environ. 2021; 751: 141663. https://doi.org/10.1016/j.scitotenv.2020.141663

4. Rubin D., Huang J., Fisher B.T., Gasparrini A., Tam V., Song L., et al. Association of social distancing, population density, and temperature with the instantaneous reproduction number of SARS-CoV-2 in counties across the United States. JAMA Netw. Open. 2020; 3(7): e2016099. https://doi.org/10.1001/jamanetworkopen.2020.16099

5. Pollán M., Pérez-Gómez B., Pastor-Barriuso R., Oteo J., Hernán M.A., Pérez-Olmeda M., et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020; 396(10250): 535–44. https://doi.org/10.1016/S0140-6736(20)31483-5

6. Mecenas P., Bastos R.T.D.R.M., Vallinoto A.C.R., Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020; 15(9): e0238339. https://doi.org/10.1371/journal.pone.0238339

7. Carson R.T., Carson S.L., Dye T.K., Mayfield S.A., Moyer D.C., Yu C.A., et al. COVID-19's U.S. temperature response profile. MedRxiv. 2020; 2020.11.03.20225581. https://doi.org/10.1101/2020.11.03.20225581

8. Gol'dshtein E.M. Vyyavlyaemost', koeffitsient letal'nosti i uroven' smertnosti ot novoi koronavirusnoi infektsii v raznykh sub\"ektakh Rossiiskoi Federatsii vo vremya i do osennei volny epidemii. COVID19-PREPRINTS.MICROBE.RU. Preprint. 2020. https://doi.org/10.21055/preprints-3111901