Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 546-555

Анализ спорадических случаев инвазивного листериоза в мегаполисе

Воронина О. Л., Тартаковский И. С., Ющук Н. Д., Рыжова Н. Н., Аксёнова Е. И., Кунда М. С., Кутузова А. В., Мелкумян А. Р., Карпова Т. И., Груздева О. А., Климова Е. А., Кареткина Г. Н., Чемерис О. Ю., Тарасова Т. А., Дронина Ю. Е., Орлова О. Е., Бурмистрова Е. Н., Цибин А. Н.

https://doi.org/10.36233/0372-9311-2020-97-6-5

Аннотация

Введение. Листериоз — пищевая инфекция, наиболее опасная для лиц из групп риска. Восприимчивость к листерийной инфекции определяется комплексом причин: факторами окружающей среды, иммунитетом человека, вирулентностью микроорганизма. Усиливать восприимчивость к листериозу могут и ранее перенесенные инфекции, особенно вирусные, количество выявленных возбудителей которых регулярно возрастает.

Целью исследования была молекулярно-генетическая характеристика возбудителей спорадического инвазивного листериоза в мегаполисе, выделенных преимущественно в период роста заболеваемости гриппом и ОРВИ.

Материалы и методы. Изоляты Listeria monocytogenes были выделены от 18 госпитализированных пациентов в стационарах Москвы с ноября 2018 г. по октябрь 2019 г. В первой группе сравнения были изоляты из продуктов питания, а также изолят из рыбных пресервов. Во вторую группу сравнения вошли изоляты из окружающей среды, исследованные ранее. Клинические изоляты исследовали методами мультилокусного секвенирования, включающими стандартную схему MLST, дополненную локусами генов интерналинов. Полногеномное секвенирование с последующим анализом корового генома (cgMLST) применяли для сравнения изолятов аутохтонного генотипа (ST7).

Результаты. В случаях инвазивного листериоза 44% изолятов относилось к перинатальному листериозу, 27% составили изоляты от пациентов с менингитом. L. monocytogenes филогенетической линии II преобладала в этих группах заболеваний, случаи которых пришлись на период превышения эпидемического порога по гриппу в сезоне 2018/2019 гг. Листериозная пневмония, выявленная в самой старшей возрастной группе, была приурочена к сезону осенних ОРВИ и преимущественно вызвана L. monocytogenes филогенетической линии I. Исследование геномов изолятов ST7 показало идентичность коровых геномов бактерий, выделенных в паре родильница–новорожденный. Из пищевых изолятов ST7 наиболее близкородственным клиническим был изолят из мяса (23 локуса отличий, общая делеция в локусе MFS-транспортёра).Сопоставление перечня выявленных генотипов с данными европейских стран по анализу инвазивного листериоза показало, что для каждой страны характерен свой спектр генотипов, но ST7 был выявлен во всех рассмотренных выборках.

Выводы. Наряду с контролем производства и хранения продуктов питания своевременная вакцинация от сезонных респираторных инфекций, применение индивидуальных средств защиты в общественных местах могут снизить заболеваемость листериозом в группах риска.

Список литературы

1. Smith A.M., Tau N.P., Smouse S.L., Allam M., Ismail A., Ramalwa N.R., et al. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with wholegenome sequencing analysis of isolates. Foodborne Pathog. Dis. 2019;16(7): 524–30. https://doi.org/10.1089/fpd.2018.2586

2. Schlech W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019; 7(3). https://doi.org/10.1128/microbiolspec.GPP3-0014-2018

3. Schwartz B., Hexter D., Broome C.V., Hightower A.W., Hirschhorn R.B., Porter J.D., at al. Investigation of an outbreak of listeriosis: new hypotheses for the etiology of epidemic Listeria monocytogenes infections. J. Infect. Dis. 1989; 159(4): 680–5. https://doi.org/10.1093/infdis/159.4.680

4. Centers for Disease Control and Prevention (CDC). Vital signs: Listeria illnesses, deaths, and outbreaks — United States, 20092011. MMWR Morb. Mortal. Wkly Rep. 2013; 62(22): 448–52.

5. Sridama V., Pacini F., Yang S.L., Moawad A., Reilly M., DeGroot L.J. Decreased levels of helper T cells: a possible cause of immunodeficiency in pregnancy. N. Engl. J. Med. 1982; 307(6): 352–6. https://doi.org/10.1056/NEJM198208053070606

6. Navaneethan U., Giannella R.A. Mechanisms of infectious diarrhea. Nat. Clin. Pract. Gastroenterol. Hepatol. 2008; 5(11): 637–47. https://doi.org/10.1038/ncpgasthep1264

7. Madjunkov M., Chaudhry S.., Ito S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017; 296(2): 143–52. https://doi.org/10.1007/s00404-017-4401-1

8. Воронина О.Л., Кунда М.С., Рыжова Н.Н., Кутузова А.В., Аксенова Е.И., Карпова Т.И. и др. Листериоз. Генотипирование как ключ к выявлению возможного источника заражения. Клиническая микробиология и антимикробная химиотерапия. 2019; 21(4): 261–73. https://doi.org/10.36488/cmac.2019.4.261273

9. Moura A., Criscuolo A., Pouseele H., Maury M.M., Leclercq A., Tarr C., et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016; 2: 16185. https://doi.org/10.1038/nmicrobiol.2016.185

10. Воронина О.Л., Кунда М.С., Рыжова Н.Н., Аксенова Е.И., Семенов А.Н., Курнаева М.А. и др. Закономерности селекции полигостальных убиквитарных микроорганизмов на примере представителей трех таксонов. Молекулярная биология. 2015; 49(3): 430–41. https://doi.org/10.7868/S0026898415030179

11. Voronina O.L., Ryzhova N.N., Kunda M.S., Kurnaeva M.A., Semenov A.N., Aksenova E.I., et al. Diversity and pathogenic potential of Listeria monocytogenes isolated from environmental sources in the Russian Federation. International Journal of Modern Engineering Research (IJMER). 2015; 5(3): 5–15.

12. Adgamov R., Zaytseva E., Thiberge J.M., Brisse S., Ermolaeva S. Genetically related Listeria monocytogenes strains isolated from lethal human cases and wild animals. In: Caliskan M., ed. Genetic Diversity in Microorganisms. Rijeka: InTech; 2012. Ch. 9.

13. Psareva E.K., Egorova I.Y., Liskova E.A., Razheva I.V., Gladkova N.A., Sokolova E.V., et al. Retrospective Study of Listeria monocytogenes isolated in the territory of inner Eurasia from 1947 to 1999. Pathogens. 2019; 8(4): 184. https://doi.org/10.3390/pathogens8040184

14. Grant J.R., Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008; 36(Web Server issue): W181–4. https://doi.org/10.1093/nar/gkn179

15. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9: 75. https://doi.org/10.1186/1471-2164-9-75

16. Overbeek R., Begley T., Butler R.M., Choudhuri J.V., Chuang H.Y., Cohoon M., et al. The ubsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005; 33(17): 5691–702. https://doi.org/10.1093/nar/gki866

17. Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44(W1): W16–21. https://doi.org/10.1093/nar/gkw387

18. Cabal A., Pietzka A., Huhulescu S., Allerberger F., Ruppitsch W., Schmid D. Isolate-based surveillance of Listeria monocytogenes by whole genome sequencing in Austria. Front. Microbiol. 2019; 10: 2282. https://doi.org/10.3389/fmicb.2019.02282

19. Lüth S., Halbedel S., Rosner B., Wilking H., Holzer A., Roedel A., et al. Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer. Emerg. Microbes Infect. 2020; 9(1): 1600–8. https://doi.org/10.1080/22221751.2020.1784044

20. Ruppitsch W., Pietzka A., Prior K., Bletz S., Fernandez H.L., Allerberger F., et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015; 53(9): 2869–76. https://doi.org/10.1128/JCM.01193-15

Journal of microbiology, epidemiology and immunobiology. 2020; 97: 546-555

Analysis of sporadic cases of invasive listeriosis in a metropolis

Voronina O. L., Tartakovsky I. S., Yuyshuk N. D., Ryzhova N. N., Aksenova E. I., Kunda M. S., Kutuzova A. V., Melkumyan A. R., Karpova T. I., Gruzdeva O. A., Klimova E. A., Karetkina G. N., Chemeris O. Yu., Tarasova T. A., Dronina Yu. E., Orlova O. E., Burmistrova E. N., Tsibin A. N.

https://doi.org/10.36233/0372-9311-2020-97-6-5

Abstract

Introduction. Listeriosis is a foodborne infection, especially dangerous for people in at-risk groups. Susceptibility to listeria infection is determined by a complex of reasons: environmental factors, host immune status, and pathogen virulence. The susceptibility to listeriosis can also be aggravated by previous infections, especially viral infections, which demonstrate a steadily increasing number of identified pathogens.

The aim of our study was to present molecular and genetic characterization of pathogens causing sporadic invasive listeriosis in a megalopolis, primarily during the peak of influenza and ARVI incidence.

Materials and methods. Listeria monocytogenes isolates were collected from 18 hospitalized patients at hospitals in Moscow, from November 2018 to October 2019. The first comparison group was represented by isolates from food products and fish preserves. The second comparison group included previously examined environmental isolates. The clinical isolates were examined by using multilocus sequence typing techniques, including the standard MLST scheme extended by loci of internalin genes. Isolates of the autochthonous genotype (ST7) were compared through whole-genome sequencing and subsequent analysis of the core genome (cgMLST).

Results. In cases of invasive listeriosis, 44% of isolates were isolated from patients with listeriosis; 27% of isolates were obtained from patients with meningitis. L. monocytogenes of phylogenetic lineage II prevailed in these groups of cases that occurred when the epidemic threshold for influenza was crossed during the 2018/2019 season. Listeria pneumonia identified in the senior age group occurred during the season of autumn ARVI and was primarily caused by L. monocytogenes of phylogenetic lineage I. The examination of genomes of ST7 isolates demonstrated identity between the core genomes of bacteria isolated from the mother-infant pair. Out of ST7 food isolates most closely related to the clinical ones was the isolate from meat (23 locus differences, the common deletion in the MFS transporter locus). Analyzing invasive listeriosis, the comparison between the list of the identified genotypes and the data from European countries showed that each country had its own specific range of genotypes, though ST7 was detected in all the examined samples.

Conclusions. Along with the monitoring of food manufacturing and storage, timely vaccination against seasonal respiratory infections and use of personal protective equipment in public spaces can reduce the risk of listeriosis incidence in at-risk groups.

References

1. Smith A.M., Tau N.P., Smouse S.L., Allam M., Ismail A., Ramalwa N.R., et al. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with wholegenome sequencing analysis of isolates. Foodborne Pathog. Dis. 2019;16(7): 524–30. https://doi.org/10.1089/fpd.2018.2586

2. Schlech W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019; 7(3). https://doi.org/10.1128/microbiolspec.GPP3-0014-2018

3. Schwartz B., Hexter D., Broome C.V., Hightower A.W., Hirschhorn R.B., Porter J.D., at al. Investigation of an outbreak of listeriosis: new hypotheses for the etiology of epidemic Listeria monocytogenes infections. J. Infect. Dis. 1989; 159(4): 680–5. https://doi.org/10.1093/infdis/159.4.680

4. Centers for Disease Control and Prevention (CDC). Vital signs: Listeria illnesses, deaths, and outbreaks — United States, 20092011. MMWR Morb. Mortal. Wkly Rep. 2013; 62(22): 448–52.

5. Sridama V., Pacini F., Yang S.L., Moawad A., Reilly M., DeGroot L.J. Decreased levels of helper T cells: a possible cause of immunodeficiency in pregnancy. N. Engl. J. Med. 1982; 307(6): 352–6. https://doi.org/10.1056/NEJM198208053070606

6. Navaneethan U., Giannella R.A. Mechanisms of infectious diarrhea. Nat. Clin. Pract. Gastroenterol. Hepatol. 2008; 5(11): 637–47. https://doi.org/10.1038/ncpgasthep1264

7. Madjunkov M., Chaudhry S.., Ito S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017; 296(2): 143–52. https://doi.org/10.1007/s00404-017-4401-1

8. Voronina O.L., Kunda M.S., Ryzhova N.N., Kutuzova A.V., Aksenova E.I., Karpova T.I. i dr. Listerioz. Genotipirovanie kak klyuch k vyyavleniyu vozmozhnogo istochnika zarazheniya. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2019; 21(4): 261–73. https://doi.org/10.36488/cmac.2019.4.261273

9. Moura A., Criscuolo A., Pouseele H., Maury M.M., Leclercq A., Tarr C., et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016; 2: 16185. https://doi.org/10.1038/nmicrobiol.2016.185

10. Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Semenov A.N., Kurnaeva M.A. i dr. Zakonomernosti selektsii poligostal'nykh ubikvitarnykh mikroorganizmov na primere predstavitelei trekh taksonov. Molekulyarnaya biologiya. 2015; 49(3): 430–41. https://doi.org/10.7868/S0026898415030179

11. Voronina O.L., Ryzhova N.N., Kunda M.S., Kurnaeva M.A., Semenov A.N., Aksenova E.I., et al. Diversity and pathogenic potential of Listeria monocytogenes isolated from environmental sources in the Russian Federation. International Journal of Modern Engineering Research (IJMER). 2015; 5(3): 5–15.

12. Adgamov R., Zaytseva E., Thiberge J.M., Brisse S., Ermolaeva S. Genetically related Listeria monocytogenes strains isolated from lethal human cases and wild animals. In: Caliskan M., ed. Genetic Diversity in Microorganisms. Rijeka: InTech; 2012. Ch. 9.

13. Psareva E.K., Egorova I.Y., Liskova E.A., Razheva I.V., Gladkova N.A., Sokolova E.V., et al. Retrospective Study of Listeria monocytogenes isolated in the territory of inner Eurasia from 1947 to 1999. Pathogens. 2019; 8(4): 184. https://doi.org/10.3390/pathogens8040184

14. Grant J.R., Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008; 36(Web Server issue): W181–4. https://doi.org/10.1093/nar/gkn179

15. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9: 75. https://doi.org/10.1186/1471-2164-9-75

16. Overbeek R., Begley T., Butler R.M., Choudhuri J.V., Chuang H.Y., Cohoon M., et al. The ubsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005; 33(17): 5691–702. https://doi.org/10.1093/nar/gki866

17. Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44(W1): W16–21. https://doi.org/10.1093/nar/gkw387

18. Cabal A., Pietzka A., Huhulescu S., Allerberger F., Ruppitsch W., Schmid D. Isolate-based surveillance of Listeria monocytogenes by whole genome sequencing in Austria. Front. Microbiol. 2019; 10: 2282. https://doi.org/10.3389/fmicb.2019.02282

19. Lüth S., Halbedel S., Rosner B., Wilking H., Holzer A., Roedel A., et al. Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer. Emerg. Microbes Infect. 2020; 9(1): 1600–8. https://doi.org/10.1080/22221751.2020.1784044

20. Ruppitsch W., Pietzka A., Prior K., Bletz S., Fernandez H.L., Allerberger F., et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015; 53(9): 2869–76. https://doi.org/10.1128/JCM.01193-15