Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 80-87

ФАКТОРЫ АДГЕЗИИ БИФИДОБАКТЕРИЙ

Захарова Ю. В.

https://doi.org/10.36233/0372-9311-2016-5-80-87

Аннотация

Представлены данные по фимбриальным и афимбриальным факторам адгезии бифидобактерий. Описаны пилеподобные структуры, их строение, условия образования у разных видов бифидобактерий. Роль афимбриальных адгезинов у бифидобактерий выполняют некоторые сахаролитические ферменты. Трансальдолаза и енолаза обнаружены у бифидобактерий на поверхности клеток. Трансальдолаза обеспечивает связывание бифидобактерий с муцином и их аутоагрегацию. Поверхностная енолаза имеет сродство к плазминогену, поэтому бифидобактерии приобретают поверхностно-связанный белок с протеолитической активностью. Описаны молекулярные структуры, придающие бифидобактериям гидрофобность - поверхностный липопротеин Вор А и липотейхоевые кислоты.
Список литературы

1. Бухарин О.В. Инфекция - модельная система ассоциативного симбиоза. Журн. микробиол. 2009, 1:83-86.

2. Бухарин, О.В., Кремлева Е.А., Черкасов С.В. Особенности эпителиально-бактериальных взаимодействий при бактериальном вагинозе. Журн. микробиол. 2012, 3: 3-8.

3. Бухарин О.В., Сгибнев А.В. Влияние активных форм кислорода на адгезивные характеристики и продукцию биопленок бактериями. Журн. микробиол. 2012, 3: 70-УЗ.

4. Лахтин В.М., Алешкин В.А., Лахтин М.В., Афанасьев С.С., Поспелова В.В., тендеров Б.А. Лектины, адгезины и лектиноподобные вещества лактобацилл и бифидобактерий. Вестник РАМН. 2006, 1: 28-34.

5. Маянский А.Н., Чеботарь И.В. Стафилококковые биопленки: структура, регуляция, отторжение. Журн. микробиол. 2011, 1: 101-108.

6. Пронина Е.А., Швиденко И.Г., Шуб Г.М., Шаповал О.Г. Влияние электромагнитного излучения на частотах молекулярного спектра поглощения и излучения кислорода и оксида азота на адгезию и образование биопленок Pseudomonas aeruginosa. Журн. микробиол. 2011, 6: 61-64.

7. Рубцова Е.В., Криворучко А. В., Яруллина Д.Р., Богачев М.И., Ким А.С., Куюкина М.С., Ившина И. Б. Влияние физико-химических свойств актинобактерий рода Rhodococcus на их адгезию к полистиролу и н-гексадекану. Фундаментальные исследования. 2013, 4: 900-904.

8. Харсеева Г.Г., Москаленко Е.П., Алутина Э.Л., Бревдо А.М. Влияние полиоксидония на адгезивные свойства Corynebacterium diphtheriae. Журн. микробиол. 2009, 2: 11-15.

9. Alp G., Aslim В., Suludere Z. et al. The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiol. Immunol. 2010, 54(11): 658-665.

10. AndriantsoanirinaV., Teolis AC.,Xin LX. et al. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: comparison of cell surface properties. Anaerobe. 2014, 28: 212-215.

11. Bergmann S., Wild D., Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiology. 2003,49:411-423.

12. Boel G., Pichereau V., Mijakovic I. et al. Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J. Mol. Biol. 2004, 337: 485-496.

13. Camp H.J.M., Oosterhof A., Veerkamp J.H. Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect. Immunity. 1985, (1): 332-334.

14. Candela M., Biagi E., Centanni M. et al. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology. 2009, 155: 3294-3303.

15. Canzi E., Guglielmetti S., Mora D. et al. Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek. 2005, 88: 207-219.

16. Duranti S., Milanti S., Lugli GA. et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015, 17 (7): 2515-2531.

17. Iguchi A., Umekawa N., Maegawa T. et al. Polymorphism and distribution of putative cell-surface adhesin-encording ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie van Leeuwenhoek. 2011, 99: 457-471.

18. Esgleas M., Li Y., Hancock M. A. et al. Isolation and characterization of alphaenolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology. 2008, 154: 2668-2679.

19. Foroni E., Serafini F., Amidani D. et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb. Cell Factories. 2011, 10(1): 16-29.

20. Furuhata K., Kato Y., Goto K. et al. Diversity of heterotrophic bacteria isolated from boifilm samples and cell surface hydrophobicity. J. Gen. Appl. Microbiology. 2009, 55: 69-74.

21. Gleinser M., Grimm V., Zhurina D. et al. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein Bop A. Microb. Cell Factories. 2012, 11 (80): 1-14.

22. Gonzalez-Rodriguez I., Sanchez B., Ruiz L. et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl. Environ. Microbiology. 2012,78 (11): 3992-3998.

23. Gonzalez-Rodriguez I., Ruiz L., Gueimonde M. et al. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 2013, 340 (1): 1-Ю.

24. Guglielmetti S., Tamagnini I., Mora D. et al. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl. Environ. Microbiology. 2008, 15 (74): 4695-4702.

25. Kainulainen V., Reunanen J., Hiippala K. et al. BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl. Environ. Microbiology. 2013, 79 (22): 6989-6997.

26. Percy M.G., Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 2014, 68: 81-100.

27. RauCl., Rathod V., Karuppayil S.M. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans. Jap. J. Med. Mycology. 2010, 51: 131-136.

28. Ruas-Madiedo P., Gueimonde M., Fernandez-Garcia M. et al. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiology. 2008, 74: 1936-1940.

29. Satoh E. Adhesion of Lactobacillus reuteri to the human epithelial cells brought on by an adhesion factor and receptor-like molecules. Jap. J. Lactic Acid Bacteria. 2008, 19 (1): 30-36.

30. Sun Z., Kong J., Hu Sh. et al. Characterization ofa S-layer protein from Lactobacillus crispa-tus КЗ 13 and the domains responsible for binding to cell wall and adherence to collagen. Appl. Microbiol. Biotechnology. 2013, 97 (5): 1941-1952.

31. Turroni F., Foroni E., Montanini B. et al. Global genome transcription profiling of Bifidobacterium bifidum PRL 2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl. Environ. Microbiology. 2011, 77 (24): 8578-8587.

32. Turroni F., Serafini E, Mangifesta M. et al. Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions. FEMS Microbiol Lett. 2014, 357 (1): 23-33.

33. Wang L-Q., Meng X-Ch, Zhang B-R. Influence of cell surface properties on adhesion ability of bifidobacteria. Word J. Microbiol. Biotechnology. 2010, 26: 1999-2007.

34. Wei X., Yan X., Chen X. et al. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J. Proteomics. 2014, 108: 89-98.

35. Yamamoto K. Various glycosidases of Bifidobacteria and their roles in adhesion to intestinal tract. Jap. J. Lactic Acid Bacteria. 2008, 19(1): 2-8.

36. Zhang L., Seiffert D., Fowler B.J. et al. Plasminogen has a broad extrahepatic distribution. Thromb Haemost. 2002, 87: 493-501.

Journal of microbiology, epidemiology and immunobiology. 2016; : 80-87

FACTORS OF ADHESION OF BIFIDOBACTERIA

Zakharova Yu. V.

https://doi.org/10.36233/0372-9311-2016-5-80-87

Abstract

Data on fimbrial and afimbrial adhesion factors of bifidobacteria are presented. Pili-like structures, their composition and conditions of formation in various species of bifidobacteria are described. Several sugar-lytic enzymes serve as afimbrial adhesins in bifidobacteria. Transaldolase and enolase are detected in bifidobacteria on cells’ surface. Transaldolase ensures binding of bifidobacteria with mucin and their auto-aggregation. Surface enolase has an affinity to plasminogen, thus bifidobacteria obtain a surface-bound protein with proteolytic activity. Molecular structures giving bifidobacteria hydrophobic properties are described - surface lipoprotein Bop A and lipoteichoic acids.
References

1. Bukharin O.V. Infektsiya - model'naya sistema assotsiativnogo simbioza. Zhurn. mikrobiol. 2009, 1:83-86.

2. Bukharin, O.V., Kremleva E.A., Cherkasov S.V. Osobennosti epitelial'no-bakterial'nykh vzaimodeistvii pri bakterial'nom vaginoze. Zhurn. mikrobiol. 2012, 3: 3-8.

3. Bukharin O.V., Sgibnev A.V. Vliyanie aktivnykh form kisloroda na adgezivnye kharakteristiki i produktsiyu bioplenok bakteriyami. Zhurn. mikrobiol. 2012, 3: 70-UZ.

4. Lakhtin V.M., Aleshkin V.A., Lakhtin M.V., Afanas'ev S.S., Pospelova V.V., tenderov B.A. Lektiny, adgeziny i lektinopodobnye veshchestva laktobatsill i bifidobakterii. Vestnik RAMN. 2006, 1: 28-34.

5. Mayanskii A.N., Chebotar' I.V. Stafilokokkovye bioplenki: struktura, regulyatsiya, ottorzhenie. Zhurn. mikrobiol. 2011, 1: 101-108.

6. Pronina E.A., Shvidenko I.G., Shub G.M., Shapoval O.G. Vliyanie elektromagnitnogo izlucheniya na chastotakh molekulyarnogo spektra pogloshcheniya i izlucheniya kisloroda i oksida azota na adgeziyu i obrazovanie bioplenok Pseudomonas aeruginosa. Zhurn. mikrobiol. 2011, 6: 61-64.

7. Rubtsova E.V., Krivoruchko A. V., Yarullina D.R., Bogachev M.I., Kim A.S., Kuyukina M.S., Ivshina I. B. Vliyanie fiziko-khimicheskikh svoistv aktinobakterii roda Rhodococcus na ikh adgeziyu k polistirolu i n-geksadekanu. Fundamental'nye issledovaniya. 2013, 4: 900-904.

8. Kharseeva G.G., Moskalenko E.P., Alutina E.L., Brevdo A.M. Vliyanie polioksidoniya na adgezivnye svoistva Corynebacterium diphtheriae. Zhurn. mikrobiol. 2009, 2: 11-15.

9. Alp G., Aslim V., Suludere Z. et al. The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiol. Immunol. 2010, 54(11): 658-665.

10. AndriantsoanirinaV., Teolis AC.,Xin LX. et al. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: comparison of cell surface properties. Anaerobe. 2014, 28: 212-215.

11. Bergmann S., Wild D., Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiology. 2003,49:411-423.

12. Boel G., Pichereau V., Mijakovic I. et al. Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J. Mol. Biol. 2004, 337: 485-496.

13. Camp H.J.M., Oosterhof A., Veerkamp J.H. Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect. Immunity. 1985, (1): 332-334.

14. Candela M., Biagi E., Centanni M. et al. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology. 2009, 155: 3294-3303.

15. Canzi E., Guglielmetti S., Mora D. et al. Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek. 2005, 88: 207-219.

16. Duranti S., Milanti S., Lugli GA. et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015, 17 (7): 2515-2531.

17. Iguchi A., Umekawa N., Maegawa T. et al. Polymorphism and distribution of putative cell-surface adhesin-encording ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie van Leeuwenhoek. 2011, 99: 457-471.

18. Esgleas M., Li Y., Hancock M. A. et al. Isolation and characterization of alphaenolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology. 2008, 154: 2668-2679.

19. Foroni E., Serafini F., Amidani D. et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb. Cell Factories. 2011, 10(1): 16-29.

20. Furuhata K., Kato Y., Goto K. et al. Diversity of heterotrophic bacteria isolated from boifilm samples and cell surface hydrophobicity. J. Gen. Appl. Microbiology. 2009, 55: 69-74.

21. Gleinser M., Grimm V., Zhurina D. et al. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein Bop A. Microb. Cell Factories. 2012, 11 (80): 1-14.

22. Gonzalez-Rodriguez I., Sanchez B., Ruiz L. et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl. Environ. Microbiology. 2012,78 (11): 3992-3998.

23. Gonzalez-Rodriguez I., Ruiz L., Gueimonde M. et al. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 2013, 340 (1): 1-Yu.

24. Guglielmetti S., Tamagnini I., Mora D. et al. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl. Environ. Microbiology. 2008, 15 (74): 4695-4702.

25. Kainulainen V., Reunanen J., Hiippala K. et al. BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl. Environ. Microbiology. 2013, 79 (22): 6989-6997.

26. Percy M.G., Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 2014, 68: 81-100.

27. RauCl., Rathod V., Karuppayil S.M. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans. Jap. J. Med. Mycology. 2010, 51: 131-136.

28. Ruas-Madiedo P., Gueimonde M., Fernandez-Garcia M. et al. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiology. 2008, 74: 1936-1940.

29. Satoh E. Adhesion of Lactobacillus reuteri to the human epithelial cells brought on by an adhesion factor and receptor-like molecules. Jap. J. Lactic Acid Bacteria. 2008, 19 (1): 30-36.

30. Sun Z., Kong J., Hu Sh. et al. Characterization ofa S-layer protein from Lactobacillus crispa-tus KZ 13 and the domains responsible for binding to cell wall and adherence to collagen. Appl. Microbiol. Biotechnology. 2013, 97 (5): 1941-1952.

31. Turroni F., Foroni E., Montanini B. et al. Global genome transcription profiling of Bifidobacterium bifidum PRL 2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl. Environ. Microbiology. 2011, 77 (24): 8578-8587.

32. Turroni F., Serafini E, Mangifesta M. et al. Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions. FEMS Microbiol Lett. 2014, 357 (1): 23-33.

33. Wang L-Q., Meng X-Ch, Zhang B-R. Influence of cell surface properties on adhesion ability of bifidobacteria. Word J. Microbiol. Biotechnology. 2010, 26: 1999-2007.

34. Wei X., Yan X., Chen X. et al. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J. Proteomics. 2014, 108: 89-98.

35. Yamamoto K. Various glycosidases of Bifidobacteria and their roles in adhesion to intestinal tract. Jap. J. Lactic Acid Bacteria. 2008, 19(1): 2-8.

36. Zhang L., Seiffert D., Fowler B.J. et al. Plasminogen has a broad extrahepatic distribution. Thromb Haemost. 2002, 87: 493-501.