Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 468-481
Нейтрофильные внеклеточные ловушки в борьбе с биопленкообразующими микроорганизмами: охотники или добыча?
Долгушин Илья Ильич, Мезенцева Елена Анатольевна
https://doi.org/10.36233/0372-9311-2020-97-5-9Аннотация
В обзоре представлены современные данные о взаимоотношениях нейтрофильных внеклеточных ловушек (НВЛ) и биопленкообразующих микроорганизмов P aeruginosa, S. aureus, Candida spp., полученные в исследованиях in vitro и in vivo. До 80% микробных инфекций человека связаны с биопленкообразующими микроорганизмами. Формирование высокоспециализированных сообществ в виде биопленок является одной из основных стратегий выживания бактерий и грибов, значимо повышая их толерантность к действию агрессивных и стрессовых внешних условий, химиотерапевтических препаратов, факторов иммунной системы, способствуя их персистенции и хронизации инфекционного процесса. Образование НВЛ в процессе нетоза является одним из биологических механизмов, используемых нейтрофилами в защите от патогенов. Хемоаттрактанты биопленочного происхождения, а также выделяемые эпителиальными и иммунокомпетентными клетками, привлекают и активируют мигрирующие нейтрофилы. Однако учитывая, что в биопленках бактерии образуют достаточно крупные клеточные кластеры и агрегаты, процесс фагоцитоза порой оказывается затруднен или невозможен. В этих условиях логично предположить, что значимость НВЛ в антибиопленочном иммунитете увеличивается. Однако за счет компонентов внеклеточного биопленочного матрикса (например, экзополисахарид Psl P aeruginosa), молекул системы quorum sensing (например, quorum sensing-система LasR P. aeruginosa), ферментов (например, LasA-протеаза и LasB-эластаза P aeruginosa), токсинов (например, лейкоцидин Пантона-Валентайна и Y-гемолизин AB S. aureus) и, вероятно, других, пока не изученных, факторов микроорганизмы в биопленках способны влиять на сигнальные системы, задействованные в нетозе, на интенсивность формирования НВЛ, механизмы секвестрации и киллинга в них, порой подчиняя и используя компоненты НВЛ для собственных целей.
Список литературы
1. Brinkmann V, Reichard U., Goosmann C., Fauler B., Uhlemann Y, Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-5. https://doi.org/10.1126/science.1092385
2. Brinkmann V. Neutrophil extracellular traps in the second de¬cade. J. Innate Immun. 2018; 10(5-6): 414-21. https://doi.org/10.1159/000489829
3. Saitoh T., Komano J., Saitoh Y, Misawa T., Takahama M., Kozaki T., et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012; 12(1): 109-16. https://doi.org/10.1016/j.chom.2012.05.015
4. Jenne C.N., Wong C.H.Y, Zemp F.J., McDonald B., Rah¬man M.M., Forsyth P.A., et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013; 13(2): 169-80. https://doi.org/10.1016/j.chom.2013.01.005
5. Nel J.G., Theron A.J., Pool R., Durandt C., Tintinger G.R., An-derson R. Neutrophil extracellular traps and their role in health and disease. South Afr. J. Sci. 2016; 112(1/2). https://doi.org/10.17159/sajs.2016/20150072
6. Schonrich G., Raftery M.J. Neutrophil extracellular traps go vi¬ral. Front. Immunol. 2016; 7: 366. https://doi.org/10.3389/fimmu.2016.00366
7. Johnson C.J., Kernien J.F., Hoyer A.R., Nett J.E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Sci. Rep. 2017; 7: 13065. https://doi.org/10.1038/s41598-017-13588-6
8. Seki M. The role of neutrophil extracellular traps in infectious diseases. J. Infect. Dis. Ther. 2017; 5(3). https://doi.org/10.4172/2332-0877.1000321
9. Burgener S.S., Schroder K. Neutrophil extracellular traps in host defense. Cold Spring Harb. Perspect. Biol. 2019; 12(7): a037028. https://doi.org/10.1101/cshperspect.a037028
10. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-22. https://doi.org/10.1126/science.284.5418.1318
11. Meyle E., Stroh P., Gunther F., Hoppy-Tichy T., Wagner C., Hansch G.M. Destruction of bacterial biofilms by polymorpho-nuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int J. Artif. Organs. 2010; 33(9): 608-20. https://doi.org/10.1177/039139881003300906
12. H0iby N., Bjarnsholt T., Moser C., Jensen P.0., Kolpen M., Qvist T., et al. Diagnosis of biofilm infections in cystic fibrosis patients. APMIS. 2017; 125(4): 339-43. https://doi.org/10.1111/apm.h2689
13. Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.F., Alar¬con E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018 4(12): e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
14. Борисова М.И., Лазакович Д.Н., Сидорова Н.А., Савушкин А.И. Биопленкообразующая активность и феномен персистенции микроорганизмов. Journal of Biomedical Technologies. 2015; (2): 28-35.
15. Чеботарь И.В. Механизмы антибиопленочного иммунитета. Вестник Российской академии медицинских наук. 2012: 67(12): 22-9.
16. Zarnowski R., Westler W.M., Lacmbouh G.A., Marita J.M., Bothe J.R., Bernhardt J., et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio. 2014; 5(4): e01333-14. https://doi.org/10.1128/mBio.01333-14
17. Wang S., Liu X., Liu H., Zhang L., Guo Y, Yu S., et al. The exopolysaccharide psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ Microbiol. Rep. 2015; 7(2): 330-40. https://doi.org/10.1111/1758-2229.12252;
18. Lee K., Yoon S.S. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol. 2017; 27(6): 1053-64. https://doi.org/10.4014/jmb.1611.11056
19. Ray V.A., Hill P.J., Stover C.K., Roy S., Sen C.K., Yu L., et al. Anti-psl targeting of Pseudomonas aeruginosa bioflms for neutrophilmediated disruption. Sci. Rep. 2017; 7(1): 16065. https://doi.org/10.1038/s41598-017-16215-6
20. Galdiero E., Lombardi L., Falanga A., Libralato G., Guida M., Carotenuto R. Biofilms: novel strategies based on antimicrobial peptides. Pharmaceutics. 2019; 11(7): 322. https://doi.org/10.3390/pharmaceutics11070322
21. Geddes-McAlister J., Kugadas A., Gadjeva M. Tasked with a challenging objective: why do neutrophils fail to battle Pseudo-monas aeruginosa biofilms. Pathogens. 2019; 8(4): 283. https://doi.org/10.3390/pathogens8040283
22. Deng B., Ghatak S., Sarkar S., Singh K., Das Ghatak P, Mathew-Steiner S.S., et al. Novel bacterial diversity and frag-mented eDNA identified in hyperbiofilm-forming Pseudomonas aeruginosa rugose small colony variant. iScience. 2020; 23(2): 100827. https://doi.org/10.1016/j.isci.2020.100827
23. Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Mi-crobial biofilms and chronic wounds. Microorganisms. 2017; 5(1): 9. https://doi.org/10.3390/microorganisms5010009
24. Zawrotniak M., Wojtalik K., Rapala-Kozik M. Farnesol, a quorum-sensing molecule of Candida albicans triggers the release of neutrophil extracellular traps. Cells. 2019; 8(12): 1611. https://doi.org/10.3390/cells8121611
25. Urban C.F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5(10): e1000639. https://doi.org/10.1371/journal.ppat.1000639
26. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S., et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl.Med. 2013; 5(178): 178ra40. https://doi.org/10.1126/scitranslmed.3005580
27. Dwyer M., Shan Q., D'Ortona S., Maurer R., Mitchell R., Olesen H., et al. Cystic fibrosis sputum DNA has NETosis char-acteristics and neutrophil extracellular trap release is egulated by macrophage migration-inhibitory factor. J. Innate Immun. 2014; 6(6): 765-79. https://doi.org/10.1159/000363242
28. Rahman S., Gadjeva M. Does NETosis contribute to the bacte-rial pathoadaptation in cystic fibrosis? Front. Immunol. 2014; 5: 378. https://doi.org/10.3389/fimmu.2014.00378
29. Ravindran M., Khan M.A., Palaniyar N. Neutrophil extracellu¬lar trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019; 9(8): 365. https://doi.org/10.3390/biom9080365
30. Takishita Y, Yasuda H., Shimizu M., Matsuo A., Morita A., Tsutsumi T., et al. Formation of neutrophil extracellular traps in mitochondrial DNA-deficient cells. J. Clin. Biochem. Nutr. 2020; 66(1): 15-23. https://doi.org/10.3164/jcbn.19-77
31. Kaplan M.J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 2012; 189(6): 2689-95. https://doi.org/10.4049/jimmunol.1201719
32. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007; 176(2): 231-41. https://doi.org/10.1083/jcb.200606027
33. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.; 2009.
34. Papayannopoulos V, Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 2010; 191(3): 677-91. https://doi.org/10.1083/jcb.201006052
35. Долгушин И.И., Савочкина А.Ю., Курносенко И.В., Долгу-шина В.Ф., Савельева А.А., Самусева И.В. и др. Участие внеклеточных ДНК-ловушек в защитных и патологических реакциях организма. Российский иммунологический журнал. 2015; 9(2): 164-70.
36. Sollberger G., Choidas A., Bum G.L., Habenberger P, Di Lucrezia R., Kordes S., et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 2018; 3(26): eaar6689. https://doi.org/10.1126/sciimmunol.aar6689
37. Thiam H.R., Wong S.L., Qiu R., Kittisopikul M., Vahabikashi A., Goldman A.E., et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chroma¬tin decondensation and nuclear envelope rupture. PNAS. 2020; 117(13): 7326-37. https://doi.org/10.1073/pnas.1909546117
38. Neeli I., Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin re-lease. Front. Immunol. 2013; 4: 38. https://doi.org/10.3389/fimmu.2013.00038
39. Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. PNAS. 2015; 112(9): 2817-22. https://doi.org/10.1073/pnas.1414055112
40. Li P, Li M., Lindberg M.R., Kennett M.J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010; 207(9): 1853-62. https://doi.org/10.1084/jem.20100239
41. Tatsiy O., McDonald P.P. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front. Immunol. 2018; 9: 2036. https://doi.org/10.3389/fimmu.2018.02036
42. Parker H., Dragunow M., Hampton M.B., Kettle A.J., Winterbourn C.C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 2012; 92(4): 841-9. https://doi.org/10.1189/jlb.1211601
43. Kenny E.F., Herzig A., Kruger R., Muth A., Mondal S., Thomp-son P.R., et al. Diverse stimuli engage different neutrophil extra-cellular trap pathways. ELife. 2017; 6: e24437. https://doi.org/10.7554/elife.24437
44. Naffah de Souza C., Breda L.C.D., Khan M.A., de Almeida S.R., Camara N.O.S., Sweezey N., et al. Promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front. Immunol. 2017; 8: 1849. https://doi.org/10.3389/fimmu.2017.01849
45. Chatfield S.M., Grebe K., Whitehead L.W., Rogers K.L., Nebl T., Murphy J.M., et al. Monosodium urate crystals generate nuclease-resistant neutrophil extracellular traps via a distinct molecular pathway. J. Immunol. 2018; 200(5): 1802-16. https://doi.org/10.4049/jimmunol.1701382
46. Khan M.A., Pace-Asciak C., Al-Hassan J.M., Afzal M., Liu Y.F., Oommen S., et al. Furanoid f-acid F6 uniquely induces NETosis compared to C16 and C18 fatty acids in human neutro-phils. Biomolecules. 2018; 8(4): 144. https://doi.org/10.3390/biom8040144
47. Khan M.A., Ali Z.S., Sweezey N., Grasemann H., Palaniyar N. Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) for-mation, and NET degradation. Genes. 2019; 10(3): 183. https://doi.org/10.3390/genes10030183
48. Zhou Y., Song K., Painter R.G., Aiken M., Reiser J., Stanton B.A., et al. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils. J. Innate Immun. 2013; 5(3): 219-30. https://doi.org/10.1159/000346568
49. Rada B. Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens. 2017; 6(1): 10. https://doi.org/10.3390/pathogens6010010
50. Hayes E., Pohl K., McElvaney N.G., Reeves E.P. The cystic fibrosis neutrophil: a specialized yet potentially defective cell. Arch. Immunol. Ther. Exp. (Warsz.) 2011; 59(2): 97-112. https://doi.org/10.1007/s00005-011-0113-6
51. Walker T.S., Tomlin K.L., Worthen G.S., Poch K.R., Lieber J.G., Saavedra M.T., et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun. 2005; 73(6): 3693-701. https://doi.org/10.1128/IAI.73.6.3693-3701.2005
52. Parks Q.M., Young R.L., Poch K.R., Malcolm K.C., Vasil M.L., Nick J.A. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human factin and DNA as targets for therapy. J. Med. Microbiol. 2009; 58(4): 492-502. https://doi.org/10.1099/jmm.0.005728-0
53. Robertson D.M., Parks Q.M., Young R.L., Kret J., Poch K.R., Malcolm K.C., et al. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest. Ophthalmol Vis. Sci. 2011; 52(5): 2844-50. https://doi.org/10.1167/iovs.10-6469
54. Floyd M., Winn M., Cullen C., Sil P, Chassaing B., Yoo D.G., et al. Swimming motility mediates the formation of neutrophil extracellular traps induced by flagellated Pseudomonas aerugi-nosa. PLoSPathog. 2016; 12(11): e1005987. https://doi.org/10.1371/journal.ppat.1005987
55. Rada B., Jendrysik M.A., Pang L., Hayes C.P., Yoo D.G., Park J.J., et al. Pyocyaninenhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One. 2013; 8(1): e54205. https://doi.org/10.1371/journal.pone.0054205
56. Rada B., Lekstrom K., Damian S., Dupuy C., Leto T.L. The pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J. Immunol. 2008; 181(7): 4883-93. https://doi.org/10.4049/jimmunol.181.7.4883
57. Rada B., Leto T.L. Redox warfare between airway epithelial cells and pseudomonas: dual oxidase versus pyocyanin. Immunol. Res. 2009; 43(1-3): 198-209. https://doi.org/10.1007/s12026-008-8071-8
58. Rada B., Gardina P, Myers T.G., Leto T.L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseu-domonas pyocyanin. Mucosal Immunol. 2011; 4(2): 158-71. https://doi.org/10.1038/mi.2010.62
59. Лазарева А.В., Чеботарь И.В., Крыжановская О.А., Чебо-тарь В.И., Маянский Н.А. Pseudomonas aeruginosa: патогенность, патогенез и патология. Клиническая микробиология и антимикробная химиотерапия. 2015; 17(3): 170-86.
60. Skopelja-Gardner S., Theprungsirikul J., Lewis K.A., Ham¬mond J.H., Carlson K.M., Hazlett H.F., et al. Regulation of Pseudomonas aeruginosa-mediated neutrophil extracellular traps. Front. Immunol. 2019; 10: 1670. https://doi.org/10.3389/fimmu.2019.01670
61. Young R.L., Malcolm K.C., Kret J.E., Caceres S.M., Poch K.R., Nichols D.P., et al. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One. 2011; 6(9): e23637. https://doi.org/10.1371/journal.pone.0023637
62. Limoli D.H., Rockel A.B., Host K.M., Jha A., Kopp B.T., Hol¬lis T., et al. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014; 10(4): e1004083. https://doi.org/10.1371/journal.ppat.1004083
63. Feltner J.B., Wolter D.J., Pope C.E., Groleau M.C., Smalley N.E., Greenberg E.P., et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio. 2016; 7(5): e01513-6. https://doi.org/10.1128/mBio.01513-16
64. Hoffman L.R., Kulasekara H.D., Emerson J., Houston L.S., Burns J.L., Ramsey B.W., et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progres-sion. J. Cyst. Fibros. 2009; 8(1): 66-70. https://doi.org/10.1016/jjcf.2008.09.006
65. Thanabalasuriar A., Scott B.N.V, Peiseler M., Willson M.E., Zeng Z., Warrener P., et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe. 2019; 25(4): 526-36. https://doi.org/10.1016/j.chom.2019.02.007
66. Alhede M., Qvortrup K., Kragh K.N., Jensen P.0., Stewart P.S., Bjarnsholt T. The origin of extracellular DNA in bacterial bio-film infections in vivo. Pathogens Dis. 2020; 78(2): ftaa018. https://doi.org/10.1093/femspd/ftaa018
67. Lew D.P., Waldvogel F.A. Osteomyelitis. Lancet. 2004; 364(9431): 369-79. https://doi.org/10.1016/S0140-6736(04)16727-5
68. Brady R.A., Leid J.G., Calhoun J.H., Costerton J.W., Shirtliff M.E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol. 2008; 52(1): 13-22. https://doi.org/10.11n/j.1574-695X.2007.00357.x
69. Ashong C.N., Raheem S.A., Hunter A.S., Mindru C., Barshes N.R. Methicillinresistant staphylococcus aureus in foot os-teomyelitis. Surg. Infect. 2017; 18(2): 143-8. https://doi.org/10.1089/sur.2016.165
70. Ferrando A., Part J., Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs. calcium sulphate antibiotic beads. J. Bone Jt. Infect. 2017; 2(4): 194-201. https://doi.org/10.7150/jbji.20404
71. de Vor L., Rooijakkers S.H.M., van Strijp J.A.G. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBSLett. 2020; 594(16): 2556-69. https://doi.org/10.1002/1873-3468.13767
72. Bhattacharya M., Berends E.T.M., Chan R., Schwab E., Roy S., Sen C.K., et al. Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. PNAS. 2018; 115(28): 7416-21. https://doi.org/10.1073/pnas.1721949115
73. Sultan A.R., Hoppenbrouwers T., Lemmensden Toom N.A., Snijders S.V, van Neck J.W., Verbon A., et al. During the early stages of Staphylococcus aureus biofilm formation, induced neutrophil extracellular traps (NETs) are degraded by autologous thermonuclease. Infect. Immun. 2019; 87(12): e00605-19. https://doi.org/10.1128/IAI.00605-19
74. Montanaro L., Poggi A., Visai L., Ravaioli S., Campoccia D., Speziale P., et al. Extracellular DNA in biofilms. Int. J. Artif. Organs. 2011; 34(9): 824-31. https://doi.org/10.5301/ijao.5000051
75. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S. Extracellular DNA required for bacterial biofilm formation. Sci-ence. 2002; 295(5559): 1487. https://doi.org/10.1126/science.295.5559.1487
76. Grande R., Nistico L., Sambanthamoorthy K., Longwell M., Iannitelli A., Cellini L., et al. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of ex-tracellular DNA and carbohydrates. Pathog. Dis. 2014; 70(3): 414-22. https://doi.org/10.1111/2049-632x.12158
77. Moormeier D.E., Bose J.L., Horswill A.R., Bayles K.W. Tem-poral and stochastic control of Staphylococcus aureus biofilm development. mBio. 2014; 5(5): e01341-14. https://doi.org/10.1128/mBio.01341-14
78. Johnson C.J., Cabezas-Olcoz J., Kernien J.F., Wang S.X., Bee-be D.J., Huttenlocher A., et al. The extracellular matrix of Can-dida albicans biofilms impairs formation of neutrophil extracel-lular traps. PLoSPathog. 2016; 12(9): e1005884. https://doi.org/10.1371/journal.ppat.1005884
79. Kernien J.F., Johnson C.J., Nett J.E. Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. J. Fungi. 2017; 3(3): 49. https://doi.org/10.3390/jof3030049
80. Hoyer A.R., Johnson C.J., Hoyer M.R., Kernien J.F., Nett J.E. Echinocandin treatment of candida albicans biofilms enhances neutrophil extracellular trap formation. Antimicrob. Agents Chemother. 2018; 62(9): e00797-18. https://doi.org/10.1128/AAC.00797-18
81. Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014; 15(11): 1017-25. https://doi.org/10.1038/ni.2987
82. Uppuluri P., Chaturvedi A.K., Srinivasan A., Banerjee M., Ramasubramaniam A.K., Kohler J.R., et al. Dispersion as an important step in the candida albicans biofilm developmental cycle. PLoS Pathog. 2010; 6(3): e1000828. https://doi.org/10.1371/journal.ppat.1000828
83. Hopke A., Nicke N., Hidu E.E., Degani G., Popolo L., Wheel¬er R.T. Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoSPathog. 2016; 12(5): e1005644. https://doi.org/10.1371/journal.ppat.1005644
84. Katragkou A., Kruhlak M.J., Simitsopoulou M., Chatzimoschou A., Taparkou A., Cotten C.J., et al. Interactions between human phagocytes and candida albicans biofilms alone and in combination with antifungal agents. J. Infect. Dis. 2010; 201(12): 1941-9. https://doi.org/10.1086/652783
85. Byrd A.S., O’Brien X.M., Johnson C.M., Lavigne L.M., Reichner J.S. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Infect. Dis. 2010; 201(12): 1941-49. https://doi.org/10.1086/652783
86. Шпаков А.О. Внутрии межвидовая хемокоммуникация у грибов. Микология и фитопатология. 2009; 43(6): 490-505.
87. Kenno S., Perito S., Mosci P., Vecchiarelli A., Monari C. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Front. Microbiol. 2016; 7: 879. https://doi.org/10.3389/fmicb.2016.00879
Journal of microbiology, epidemiology and immunobiology. 2020; 97: 468-481
Neutrophil extracellular traps in the fight against biofilm-forming microorganisms: hunters or prey?
Dolgushin Ilya I., Mezentseva Elena A.
https://doi.org/10.36233/0372-9311-2020-97-5-9Abstract
The review presents up-to-date data on the relationships between neutrophil extracellular traps (NETs) and biofilm-forming microorganisms P aeruginosa, S. aureus, Candida spp. obtained in vitro and in vivo studies. Up to 80% of human microbial infections are associated with biofilm-forming microorganisms. The formation of highly specialized biofilm communities is one of the main strategies for the survival of bacteria and fungi, significantly increasing their tolerance to aggressive and stressful environmental conditions, chemotherapeutic drugs, and immune system factors, contributing to their persistence and chronicity of the infectious process. The formation of NETs in the process of NETosis is one of the biological mechanisms used by neutrophils in protection against pathogens. Chemoattractants of biofilm origin, as well as those secreted by epithelial and immunocompetent cells, attract and activate migrating neutrophils. However, given that bacteria form fairly large cell clusters and aggregates in biofilms, the process of phagocytosis is sometimes difficult or impossible. Under these conditions, it is logical to assume that the importance of NETs in anti-biofilm immunity increases. However, due to the components of the extracellular biofilm matrix (e.g., Psl exopolysaccharide P aeruginosa), quorum sensing (QS) molecules (e.g., LasR QS system P aeruginosa), enzymes (e.g., LasA protease and LasB elastase P. aeruginosa), toxins (e.g., Panton-Valentine leukocidin and AB Y-hemolysin S. aureus) and probably other factors yet to be studied, the microorganisms in biofilms are able to influence the signaling systems involved in NETosis, the intensity of the formation of NETs, the sequestration and killing mechanisms in them, sometimes subordinating and using NETs components for their own purposes.
References
1. Brinkmann V, Reichard U., Goosmann C., Fauler B., Uhlemann Y, Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-5. https://doi.org/10.1126/science.1092385
2. Brinkmann V. Neutrophil extracellular traps in the second de¬cade. J. Innate Immun. 2018; 10(5-6): 414-21. https://doi.org/10.1159/000489829
3. Saitoh T., Komano J., Saitoh Y, Misawa T., Takahama M., Kozaki T., et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012; 12(1): 109-16. https://doi.org/10.1016/j.chom.2012.05.015
4. Jenne C.N., Wong C.H.Y, Zemp F.J., McDonald B., Rah¬man M.M., Forsyth P.A., et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013; 13(2): 169-80. https://doi.org/10.1016/j.chom.2013.01.005
5. Nel J.G., Theron A.J., Pool R., Durandt C., Tintinger G.R., An-derson R. Neutrophil extracellular traps and their role in health and disease. South Afr. J. Sci. 2016; 112(1/2). https://doi.org/10.17159/sajs.2016/20150072
6. Schonrich G., Raftery M.J. Neutrophil extracellular traps go vi¬ral. Front. Immunol. 2016; 7: 366. https://doi.org/10.3389/fimmu.2016.00366
7. Johnson C.J., Kernien J.F., Hoyer A.R., Nett J.E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Sci. Rep. 2017; 7: 13065. https://doi.org/10.1038/s41598-017-13588-6
8. Seki M. The role of neutrophil extracellular traps in infectious diseases. J. Infect. Dis. Ther. 2017; 5(3). https://doi.org/10.4172/2332-0877.1000321
9. Burgener S.S., Schroder K. Neutrophil extracellular traps in host defense. Cold Spring Harb. Perspect. Biol. 2019; 12(7): a037028. https://doi.org/10.1101/cshperspect.a037028
10. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-22. https://doi.org/10.1126/science.284.5418.1318
11. Meyle E., Stroh P., Gunther F., Hoppy-Tichy T., Wagner C., Hansch G.M. Destruction of bacterial biofilms by polymorpho-nuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int J. Artif. Organs. 2010; 33(9): 608-20. https://doi.org/10.1177/039139881003300906
12. H0iby N., Bjarnsholt T., Moser C., Jensen P.0., Kolpen M., Qvist T., et al. Diagnosis of biofilm infections in cystic fibrosis patients. APMIS. 2017; 125(4): 339-43. https://doi.org/10.1111/apm.h2689
13. Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.F., Alar¬con E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018 4(12): e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
14. Borisova M.I., Lazakovich D.N., Sidorova N.A., Savushkin A.I. Bioplenkoobrazuyushchaya aktivnost' i fenomen persistentsii mikroorganizmov. Journal of Biomedical Technologies. 2015; (2): 28-35.
15. Chebotar' I.V. Mekhanizmy antibioplenochnogo immuniteta. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2012: 67(12): 22-9.
16. Zarnowski R., Westler W.M., Lacmbouh G.A., Marita J.M., Bothe J.R., Bernhardt J., et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio. 2014; 5(4): e01333-14. https://doi.org/10.1128/mBio.01333-14
17. Wang S., Liu X., Liu H., Zhang L., Guo Y, Yu S., et al. The exopolysaccharide psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ Microbiol. Rep. 2015; 7(2): 330-40. https://doi.org/10.1111/1758-2229.12252;
18. Lee K., Yoon S.S. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol. 2017; 27(6): 1053-64. https://doi.org/10.4014/jmb.1611.11056
19. Ray V.A., Hill P.J., Stover C.K., Roy S., Sen C.K., Yu L., et al. Anti-psl targeting of Pseudomonas aeruginosa bioflms for neutrophilmediated disruption. Sci. Rep. 2017; 7(1): 16065. https://doi.org/10.1038/s41598-017-16215-6
20. Galdiero E., Lombardi L., Falanga A., Libralato G., Guida M., Carotenuto R. Biofilms: novel strategies based on antimicrobial peptides. Pharmaceutics. 2019; 11(7): 322. https://doi.org/10.3390/pharmaceutics11070322
21. Geddes-McAlister J., Kugadas A., Gadjeva M. Tasked with a challenging objective: why do neutrophils fail to battle Pseudo-monas aeruginosa biofilms. Pathogens. 2019; 8(4): 283. https://doi.org/10.3390/pathogens8040283
22. Deng B., Ghatak S., Sarkar S., Singh K., Das Ghatak P, Mathew-Steiner S.S., et al. Novel bacterial diversity and frag-mented eDNA identified in hyperbiofilm-forming Pseudomonas aeruginosa rugose small colony variant. iScience. 2020; 23(2): 100827. https://doi.org/10.1016/j.isci.2020.100827
23. Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Mi-crobial biofilms and chronic wounds. Microorganisms. 2017; 5(1): 9. https://doi.org/10.3390/microorganisms5010009
24. Zawrotniak M., Wojtalik K., Rapala-Kozik M. Farnesol, a quorum-sensing molecule of Candida albicans triggers the release of neutrophil extracellular traps. Cells. 2019; 8(12): 1611. https://doi.org/10.3390/cells8121611
25. Urban C.F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5(10): e1000639. https://doi.org/10.1371/journal.ppat.1000639
26. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S., et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl.Med. 2013; 5(178): 178ra40. https://doi.org/10.1126/scitranslmed.3005580
27. Dwyer M., Shan Q., D'Ortona S., Maurer R., Mitchell R., Olesen H., et al. Cystic fibrosis sputum DNA has NETosis char-acteristics and neutrophil extracellular trap release is egulated by macrophage migration-inhibitory factor. J. Innate Immun. 2014; 6(6): 765-79. https://doi.org/10.1159/000363242
28. Rahman S., Gadjeva M. Does NETosis contribute to the bacte-rial pathoadaptation in cystic fibrosis? Front. Immunol. 2014; 5: 378. https://doi.org/10.3389/fimmu.2014.00378
29. Ravindran M., Khan M.A., Palaniyar N. Neutrophil extracellu¬lar trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019; 9(8): 365. https://doi.org/10.3390/biom9080365
30. Takishita Y, Yasuda H., Shimizu M., Matsuo A., Morita A., Tsutsumi T., et al. Formation of neutrophil extracellular traps in mitochondrial DNA-deficient cells. J. Clin. Biochem. Nutr. 2020; 66(1): 15-23. https://doi.org/10.3164/jcbn.19-77
31. Kaplan M.J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 2012; 189(6): 2689-95. https://doi.org/10.4049/jimmunol.1201719
32. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007; 176(2): 231-41. https://doi.org/10.1083/jcb.200606027
33. Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neitrofil'nye vnekletochnye lovushki i metody otsenki funktsional'nogo statusa neitrofilov. M.; 2009.
34. Papayannopoulos V, Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 2010; 191(3): 677-91. https://doi.org/10.1083/jcb.201006052
35. Dolgushin I.I., Savochkina A.Yu., Kurnosenko I.V., Dolgu-shina V.F., Savel'eva A.A., Samuseva I.V. i dr. Uchastie vnekletochnykh DNK-lovushek v zashchitnykh i patologicheskikh reaktsiyakh organizma. Rossiiskii immunologicheskii zhurnal. 2015; 9(2): 164-70.
36. Sollberger G., Choidas A., Bum G.L., Habenberger P, Di Lucrezia R., Kordes S., et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 2018; 3(26): eaar6689. https://doi.org/10.1126/sciimmunol.aar6689
37. Thiam H.R., Wong S.L., Qiu R., Kittisopikul M., Vahabikashi A., Goldman A.E., et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chroma¬tin decondensation and nuclear envelope rupture. PNAS. 2020; 117(13): 7326-37. https://doi.org/10.1073/pnas.1909546117
38. Neeli I., Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin re-lease. Front. Immunol. 2013; 4: 38. https://doi.org/10.3389/fimmu.2013.00038
39. Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. PNAS. 2015; 112(9): 2817-22. https://doi.org/10.1073/pnas.1414055112
40. Li P, Li M., Lindberg M.R., Kennett M.J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010; 207(9): 1853-62. https://doi.org/10.1084/jem.20100239
41. Tatsiy O., McDonald P.P. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front. Immunol. 2018; 9: 2036. https://doi.org/10.3389/fimmu.2018.02036
42. Parker H., Dragunow M., Hampton M.B., Kettle A.J., Winterbourn C.C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 2012; 92(4): 841-9. https://doi.org/10.1189/jlb.1211601
43. Kenny E.F., Herzig A., Kruger R., Muth A., Mondal S., Thomp-son P.R., et al. Diverse stimuli engage different neutrophil extra-cellular trap pathways. ELife. 2017; 6: e24437. https://doi.org/10.7554/elife.24437
44. Naffah de Souza C., Breda L.C.D., Khan M.A., de Almeida S.R., Camara N.O.S., Sweezey N., et al. Promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front. Immunol. 2017; 8: 1849. https://doi.org/10.3389/fimmu.2017.01849
45. Chatfield S.M., Grebe K., Whitehead L.W., Rogers K.L., Nebl T., Murphy J.M., et al. Monosodium urate crystals generate nuclease-resistant neutrophil extracellular traps via a distinct molecular pathway. J. Immunol. 2018; 200(5): 1802-16. https://doi.org/10.4049/jimmunol.1701382
46. Khan M.A., Pace-Asciak C., Al-Hassan J.M., Afzal M., Liu Y.F., Oommen S., et al. Furanoid f-acid F6 uniquely induces NETosis compared to C16 and C18 fatty acids in human neutro-phils. Biomolecules. 2018; 8(4): 144. https://doi.org/10.3390/biom8040144
47. Khan M.A., Ali Z.S., Sweezey N., Grasemann H., Palaniyar N. Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) for-mation, and NET degradation. Genes. 2019; 10(3): 183. https://doi.org/10.3390/genes10030183
48. Zhou Y., Song K., Painter R.G., Aiken M., Reiser J., Stanton B.A., et al. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils. J. Innate Immun. 2013; 5(3): 219-30. https://doi.org/10.1159/000346568
49. Rada B. Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens. 2017; 6(1): 10. https://doi.org/10.3390/pathogens6010010
50. Hayes E., Pohl K., McElvaney N.G., Reeves E.P. The cystic fibrosis neutrophil: a specialized yet potentially defective cell. Arch. Immunol. Ther. Exp. (Warsz.) 2011; 59(2): 97-112. https://doi.org/10.1007/s00005-011-0113-6
51. Walker T.S., Tomlin K.L., Worthen G.S., Poch K.R., Lieber J.G., Saavedra M.T., et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun. 2005; 73(6): 3693-701. https://doi.org/10.1128/IAI.73.6.3693-3701.2005
52. Parks Q.M., Young R.L., Poch K.R., Malcolm K.C., Vasil M.L., Nick J.A. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human factin and DNA as targets for therapy. J. Med. Microbiol. 2009; 58(4): 492-502. https://doi.org/10.1099/jmm.0.005728-0
53. Robertson D.M., Parks Q.M., Young R.L., Kret J., Poch K.R., Malcolm K.C., et al. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest. Ophthalmol Vis. Sci. 2011; 52(5): 2844-50. https://doi.org/10.1167/iovs.10-6469
54. Floyd M., Winn M., Cullen C., Sil P, Chassaing B., Yoo D.G., et al. Swimming motility mediates the formation of neutrophil extracellular traps induced by flagellated Pseudomonas aerugi-nosa. PLoSPathog. 2016; 12(11): e1005987. https://doi.org/10.1371/journal.ppat.1005987
55. Rada B., Jendrysik M.A., Pang L., Hayes C.P., Yoo D.G., Park J.J., et al. Pyocyaninenhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One. 2013; 8(1): e54205. https://doi.org/10.1371/journal.pone.0054205
56. Rada B., Lekstrom K., Damian S., Dupuy C., Leto T.L. The pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J. Immunol. 2008; 181(7): 4883-93. https://doi.org/10.4049/jimmunol.181.7.4883
57. Rada B., Leto T.L. Redox warfare between airway epithelial cells and pseudomonas: dual oxidase versus pyocyanin. Immunol. Res. 2009; 43(1-3): 198-209. https://doi.org/10.1007/s12026-008-8071-8
58. Rada B., Gardina P, Myers T.G., Leto T.L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseu-domonas pyocyanin. Mucosal Immunol. 2011; 4(2): 158-71. https://doi.org/10.1038/mi.2010.62
59. Lazareva A.V., Chebotar' I.V., Kryzhanovskaya O.A., Chebo-tar' V.I., Mayanskii N.A. Pseudomonas aeruginosa: patogennost', patogenez i patologiya. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2015; 17(3): 170-86.
60. Skopelja-Gardner S., Theprungsirikul J., Lewis K.A., Ham¬mond J.H., Carlson K.M., Hazlett H.F., et al. Regulation of Pseudomonas aeruginosa-mediated neutrophil extracellular traps. Front. Immunol. 2019; 10: 1670. https://doi.org/10.3389/fimmu.2019.01670
61. Young R.L., Malcolm K.C., Kret J.E., Caceres S.M., Poch K.R., Nichols D.P., et al. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One. 2011; 6(9): e23637. https://doi.org/10.1371/journal.pone.0023637
62. Limoli D.H., Rockel A.B., Host K.M., Jha A., Kopp B.T., Hol¬lis T., et al. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014; 10(4): e1004083. https://doi.org/10.1371/journal.ppat.1004083
63. Feltner J.B., Wolter D.J., Pope C.E., Groleau M.C., Smalley N.E., Greenberg E.P., et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio. 2016; 7(5): e01513-6. https://doi.org/10.1128/mBio.01513-16
64. Hoffman L.R., Kulasekara H.D., Emerson J., Houston L.S., Burns J.L., Ramsey B.W., et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progres-sion. J. Cyst. Fibros. 2009; 8(1): 66-70. https://doi.org/10.1016/jjcf.2008.09.006
65. Thanabalasuriar A., Scott B.N.V, Peiseler M., Willson M.E., Zeng Z., Warrener P., et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe. 2019; 25(4): 526-36. https://doi.org/10.1016/j.chom.2019.02.007
66. Alhede M., Qvortrup K., Kragh K.N., Jensen P.0., Stewart P.S., Bjarnsholt T. The origin of extracellular DNA in bacterial bio-film infections in vivo. Pathogens Dis. 2020; 78(2): ftaa018. https://doi.org/10.1093/femspd/ftaa018
67. Lew D.P., Waldvogel F.A. Osteomyelitis. Lancet. 2004; 364(9431): 369-79. https://doi.org/10.1016/S0140-6736(04)16727-5
68. Brady R.A., Leid J.G., Calhoun J.H., Costerton J.W., Shirtliff M.E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol. 2008; 52(1): 13-22. https://doi.org/10.11n/j.1574-695X.2007.00357.x
69. Ashong C.N., Raheem S.A., Hunter A.S., Mindru C., Barshes N.R. Methicillinresistant staphylococcus aureus in foot os-teomyelitis. Surg. Infect. 2017; 18(2): 143-8. https://doi.org/10.1089/sur.2016.165
70. Ferrando A., Part J., Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs. calcium sulphate antibiotic beads. J. Bone Jt. Infect. 2017; 2(4): 194-201. https://doi.org/10.7150/jbji.20404
71. de Vor L., Rooijakkers S.H.M., van Strijp J.A.G. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBSLett. 2020; 594(16): 2556-69. https://doi.org/10.1002/1873-3468.13767
72. Bhattacharya M., Berends E.T.M., Chan R., Schwab E., Roy S., Sen C.K., et al. Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. PNAS. 2018; 115(28): 7416-21. https://doi.org/10.1073/pnas.1721949115
73. Sultan A.R., Hoppenbrouwers T., Lemmensden Toom N.A., Snijders S.V, van Neck J.W., Verbon A., et al. During the early stages of Staphylococcus aureus biofilm formation, induced neutrophil extracellular traps (NETs) are degraded by autologous thermonuclease. Infect. Immun. 2019; 87(12): e00605-19. https://doi.org/10.1128/IAI.00605-19
74. Montanaro L., Poggi A., Visai L., Ravaioli S., Campoccia D., Speziale P., et al. Extracellular DNA in biofilms. Int. J. Artif. Organs. 2011; 34(9): 824-31. https://doi.org/10.5301/ijao.5000051
75. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S. Extracellular DNA required for bacterial biofilm formation. Sci-ence. 2002; 295(5559): 1487. https://doi.org/10.1126/science.295.5559.1487
76. Grande R., Nistico L., Sambanthamoorthy K., Longwell M., Iannitelli A., Cellini L., et al. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of ex-tracellular DNA and carbohydrates. Pathog. Dis. 2014; 70(3): 414-22. https://doi.org/10.1111/2049-632x.12158
77. Moormeier D.E., Bose J.L., Horswill A.R., Bayles K.W. Tem-poral and stochastic control of Staphylococcus aureus biofilm development. mBio. 2014; 5(5): e01341-14. https://doi.org/10.1128/mBio.01341-14
78. Johnson C.J., Cabezas-Olcoz J., Kernien J.F., Wang S.X., Bee-be D.J., Huttenlocher A., et al. The extracellular matrix of Can-dida albicans biofilms impairs formation of neutrophil extracel-lular traps. PLoSPathog. 2016; 12(9): e1005884. https://doi.org/10.1371/journal.ppat.1005884
79. Kernien J.F., Johnson C.J., Nett J.E. Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. J. Fungi. 2017; 3(3): 49. https://doi.org/10.3390/jof3030049
80. Hoyer A.R., Johnson C.J., Hoyer M.R., Kernien J.F., Nett J.E. Echinocandin treatment of candida albicans biofilms enhances neutrophil extracellular trap formation. Antimicrob. Agents Chemother. 2018; 62(9): e00797-18. https://doi.org/10.1128/AAC.00797-18
81. Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014; 15(11): 1017-25. https://doi.org/10.1038/ni.2987
82. Uppuluri P., Chaturvedi A.K., Srinivasan A., Banerjee M., Ramasubramaniam A.K., Kohler J.R., et al. Dispersion as an important step in the candida albicans biofilm developmental cycle. PLoS Pathog. 2010; 6(3): e1000828. https://doi.org/10.1371/journal.ppat.1000828
83. Hopke A., Nicke N., Hidu E.E., Degani G., Popolo L., Wheel¬er R.T. Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoSPathog. 2016; 12(5): e1005644. https://doi.org/10.1371/journal.ppat.1005644
84. Katragkou A., Kruhlak M.J., Simitsopoulou M., Chatzimoschou A., Taparkou A., Cotten C.J., et al. Interactions between human phagocytes and candida albicans biofilms alone and in combination with antifungal agents. J. Infect. Dis. 2010; 201(12): 1941-9. https://doi.org/10.1086/652783
85. Byrd A.S., O’Brien X.M., Johnson C.M., Lavigne L.M., Reichner J.S. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Infect. Dis. 2010; 201(12): 1941-49. https://doi.org/10.1086/652783
86. Shpakov A.O. Vnutrii mezhvidovaya khemokommunikatsiya u gribov. Mikologiya i fitopatologiya. 2009; 43(6): 490-505.
87. Kenno S., Perito S., Mosci P., Vecchiarelli A., Monari C. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Front. Microbiol. 2016; 7: 879. https://doi.org/10.3389/fmicb.2016.00879
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32