Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 271-279
Молекулярные механизмы персистенции бактерий
Андрюков Борис Георгиевич, Ляпун Ирина Николаевна
https://doi.org/10.36233/0372-9311-2020-97-3-10Аннотация
Список литературы
1. Hobby G.L., Meyer K., Chaffee E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. NY. 1942; 50(2): 281-5. DOI: http://doi.org/10.3181/00379727-50-13773
2. Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 1944; 244(6320): 497-500. DOI: http://doi.org/10.1016/S0140-6736(00)74210-3
3. van den Bergh B., Michiels J.E., Fauvart M., Michiels J. Should we develop screens for multi-drug antibiotic tolerance? Expert. Rev. Anti. Infect. Ther. 2016; 14(7): 613-16. DOI: http://doi.org/10.1080/14787210.2016.1194754
4. Rehab Mahmoud abd El-Baky. The future challenges facing antimicrobial therapy: resistance and persistence. Am. J. Microbiol. Res. 2016; 4(1): 1-15. DOI: http://doi.org/10.12691/ajmr-4-1-1
5. Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004; 305(5690): 1622-5. DOI: http://doi.org/10.1126/science.1099390
6. Lewis K. Persister cells. Annu. Rev. Microbiol. 2010; 64: 357- 72. DOI: http://doi.org/10.1146/annurev.micro.112408.134306
7. van Teeseling M.C.F., de Pedro M.A., Cava F. Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 2017; 8: 1264. DOI: http://doi.org/10.3389/fmicb.2017.01264
8. Kysela D.T., Randich A.M., Caccamo P.D., Brun Y.V. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biol. 2016; 14(10): e1002565. DOI: http://doi.org/10.1371/journal.pbio.1002565
9. Kawai Y., Mercier R., Errington J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 2014; 24(8): 863-7. DOI: http://doi.org/10.1016/j.cub.2014.02.053
10. Harms A., Maisonneuve E., Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016; 354(6318): aaf4268. DOI: http://doi.org/10.1126/science.aaf4268
11. Maisonneuve E., Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014; 157(3): 539-48. DOI: http://doi.org/10.1016/j.cell.2014.02.050
12. Orman M.A., Brynildsen M.P. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat. Commun. 2015; 6: 7983. DOI: http://doi.org/10.1038/ncomms8983
13. Randich A.M., Brun Y.V. Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Front. Microbiol. 2015; 6: 580. DOI: http://doi.org/10.3389/fmicb.2015.00580
14. Stubbendieck R.M., Straight P.D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 2016; 198(16): 2145-55. DOI: http://doi.org/10.1128/JB.00275-16
15. Gaivão M., Dionisio F., Gjini E. Transmission fitness in cocolonization and the persistence of bacterial pathogens. Bull. Math. Biol. 2017; 79(9): 2068-87. DOI: http://doi.org/10.1007/s11538-017-0320-3
16. Dorosky R.J., Pierson L.S., Pierson E.A. Pseudomonas chlororaphis produces multiple R-Tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Appl. Environ. Microbiol. 2018; 84(18): e01230- 18. DOI: http://doi.org/10.1128/AEM.01230-18
17. Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017; 15(8): 453-64. DOI: http://doi.org/10.1038/nrmicro.2017.42
18. Grant S.S., Hung D.T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013; 4(4): 273-83. DOI: http://doi.org/10.4161/viru.23987
19. Randall R.E., Griffin D.E. Within host RNA virus persistence: mechanisms and consequences. Curr. Opin. Virol. 2017; 23: 35- 42. DOI: http://doi.org/10.1016/j.coviro.2017.03.001
20. Böhm L., Torsin S., Tint S.H., Eckstein M.T., Ludwig T., Pérez J.C. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. 2017; 13(10): e1006699. DOI: http://doi.org/10.1371/journal.ppat.1006699
21. Codony F., Miranda A.M., Mas J. Persistence and proliferation of some unicellular algae in drinking water systems as result of their heterotrophic metabolism: short communication. Water SA. 2003; 29(1): 113-6. DOI: http://doi.org/10.4314/wsa.v29i1.4953
22. Pearl Mizrahi S., Gefen O., Simon I., Balaban N.Q. Persistence to anti-cancer treatments in the stationary to proliferating transition. Cell Cycle. 2016; 15(24): 3442-53. DOI: http://doi.org/10.1080/15384101.2016.1248006
23. Long R.L., Gorecki M.J., Renton M., Scott J.K., Colville L., Goggin D.E., et al. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 2015; 90(1): 31-59. DOI: http://doi.org/10.1111/brv.12095
24. Yafremava L.S., Wielgos M., Thomas S., Nasir A., Wang M., Mittenthal J.E., et al. A general framework of persistence strategies for biological systems helps explain domains of life. Front. Genet. 2013; 4: 16. DOI: http://doi.org/10.3389/fgene.2013.00016
25. van Boxtel C., van Heerden J.H., Nordholt N., Schmidt P., Bruggeman F.J. Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface. 2017; 14(132): 20170141. DOI: http://doi.org/10.1098/rsif.2017.0141
26. Smith S.E. Organisms as persisters. Theor. Pract. Biol. 2017; 9(14). DOI: http://doi.org/10.3998/ptb.6959004.0009.014
27. Pu Y., Ke Y., Bai F. Active efflux in dormant bacterial cells — new insights into antibiotic persistence. Drug. Resist. Updat. 2017; 30: 7-14. DOI: http://doi.org/10.1016/j.drup.2016.11.002
28. Kim J.S., Wood T.K. Tolerant, growing cells from nutrient shifts are not persister cells. mBio. 2017; 8(2): e00354-17. DOI: http://doi.org/10.1128/mBio.00354-1718. Available at: http://mbio.asm.org/content/8/2/e00354-17.long
29. Ayrapetyan M., Williams T.C., Baxter R., Oliver J.D. Viable but non-culturable and persister cells coexist stochastically and are induced by human serum. Infect. Immun. 2015; 83(11): 4194- 03. DOI: http://doi.org/10.1128/IAI.00404-15
30. Ayrapetyan M., Williams T., Oliver J.D. Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 2018; 200(20): e00249-18. DOI: http://doi.org/10.1128/JB.00249-18
31. Amato S.M., Fazen C.H., Henry T.C., Mok W.W., Orman M.A., Sandvik E.L., et al. The role of metabolism in bacterial persistence. Front. Microbiol. 2014; 5: 70. DOI: http://doi.org/10.3389/fmicb.2014.00070
32. Ishii S., Tago K., Senoo K. Single-cell analysis and isolation for microbiology and biotechnology: Methods and applications. Appl. Microbiol. Biotechnol. 2010; 86(5): 1281-92. DOI: http://doi.org/10.1007/s00253-010-2524-4.
33. Li M., Xu J., Romero-Gonzalez M., Banwart S.A., Huang W.E. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 2012; 23(1): 56-63. DOI: http://doi.org/10.1016/j.copbio.2011.11.019
34. Mazutis L., Gilbert J., Ung W.L., Weitz D.A., Griffiths A.D., Heyman J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013; 8(5): 870-91. DOI: http://doi.org/10.1038/nprot.2013.046
35. Stuart T., Satija R. Integrative single-cell analysis. Nat. Rev. Genet. 2019; 20(5): 257-72. DOI: http://doi.org/10.1038/s41576-019-0093-7
36. Peterson V.M., Zhang K.X., Kumar N., Wong J., Li L., Wilson D.C., Moore R., et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 2017; 35(10): 936-9. DOI: http://doi.org/10.1038/nbt.3973
37. Ramani V., Deng X., Qiu R., Gunderson K.L., Steemers F.J., Disteche C.M., et al. Massively multiplex single-cell Hi-C. Nat. Methods. 2017; 14(3): 263-6. DOI: http://doi.org/10.1038/nmeth.4155
38. Tóth E.N., Lohith A., Mondal M., Guo J., Fukamizu A., Pourmand N. Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. J. Biol. Chem. 2018; 293(13): 4940-51. DOI: http://doi.org/10.1074/jbc.M117.800763
39. Hong-Geller E., Micheva-Viteva S.N. Targeting bacterial persistence to develop therapeutics against infectious disease. DOI: http://doi.org/10.5772/59404 Available at: https:// www.intechopen.com/books/drug-discovery-and-development-from-molecules-to-medicine/targeting-bacterial-persistence-to-develop-therapeutics-against-infectious-disease
40. Lin J.M., eds. Microfluidics for Single-Cell Analysis. Beijing, China: Springer Singapore; 2019. DOI: http://doi.org/10.1007/978-981-32-9729-6
41. Michiels J.E., van den Bergh B., Verstraeten N., Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug. Resist. Updat. 2016; 29: 76-89. DOI: http://doi.org/10.1016/j.drup.2016.10.002
42. Tian C., Semsey S., Mitarai N. Synchronized switching of multiple toxin-antitoxin modules by (p)ppGpp fluctuation. Nucleic. Acids. Res. 2017; 45(14): 8180-9. DOI: http://doi.org/10.1093/nar/gkx552
43. Svenningsen M.S., Veress A., Harms A., Mitarai N., Semsey S. Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells. Sci. Rep. 2019; 9(1): 6056. DOI: http://doi.org/10.1038/s41598-019-42403-7
44. Wood T.K. Combatting bacterial persister cells. Biotechnol. Bioeng. 2016; 113(3): 476-83. DOI: http://doi.org/10.1002/bit.25721
45. Maisonneuve E., Castro-Camargo M., Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2013; 154(5): 1140-50. DOI: http://doi.org/10.1016/j.cell.2013.07.048
46. Manav M.C., Beljantseva J., Bojer M.S., Tenson T., Ingmer H., Hauryliuk V., et al. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J. Biol. Chem. 2018; 293(9): 3254-64. DOI: http://doi.org/10.1074/jbc.RA117.001374
47. Syal K., Flentie K., Bhardwaj N., Maiti K., Jayaraman N., Stallings C.L., et al. Synthetic (p)ppGpp analogue is an inhibitor of stringent response in mycobacteria. Antimicrob. Agents. Chemother. 2017; 61(6): e00443-17. DOI: http://doi.org/10.1128/AAC.00443-17
48. Hauryliuk V., Atkinson G.C., Murakami K.S., Tenson T., Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 2015; 13(5): 298- 09. DOI: http://doi.org/10.1038/nrmicro3448
49. Ogura T., Hiraga S. Mini-F plasmid genes that couples host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA. 1983; 80(15): 4784-8. DOI: http://doi.org/10.1073/pnas.80.15.4784
50. Page R., Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 2016; 12(4): 208-14. DOI: http://doi.org/10.1038/nchembio.2044
51. van Melderen L. Toxin-antitoxin systems: why so many, what for? Curr. Opin. Microbiol. 2010; 13(6): 781-5. DOI: http://doi.org/10.1016/j.mib.2010.10.006
52. Lee K.Y., Lee B.J. Structure, biology, and therapeutic application of toxin-antitoxin systems in pathogenic bacteria. Toxins. 2016; 8(10): 305. DOI: http://doi.org/10.3390/toxins8100305
53. Maleki A., Ghafourian S., Pakzad I., Badakhsh B., Sadeghifard N. MazE antitoxin of toxin-antitoxin system and fbpA as reliable targets to eradication of Neisseria meningitidis. Curr. Pharm. Des. 2018; 24(11): 1204‐10. DOI: http://doi.org/10.2174/1381612824666171213094730
54. Cui P., Xu T., Zhang W.H., Zhang Y. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance. Yi Chuan. 2016; 38(10): 859-71. DOI: http://doi.org/10.16288/j.yczz.16-213
55. Chowdhury N., Wood T.L., Martínez-Vázquez M., García-Contreras R., Wood T.K. DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol. Bioeng. 2016; 113(9): 1984- 92. DOI: http://doi.org/10.1002/bit.25963
56. Conlon B.P., Nakayasu E.S., Fleck L.E., LaFleur M.D., Isabella V.M., Coleman K., et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013; 503(7476): 365-70. DOI: http://doi.org/10.1038/nature12790
57. Równicki M., Pieńko T., Czarnecki J., Kolanowska M., Bartosik D., Trylska J. Artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems by antisense peptide nucleic acids as an antibacterial strategy. Front. Microbiol. 2018; 9: 2870. DOI: http://doi.org/10.3389/fmicb.2018.02870
Journal of microbiology, epidemiology and immunobiology. 2020; 97: 271-279
Molecular Mechanisms оf Persistence оf Bacteria
Andryukov Boris G., Lyapun Irina N.
https://doi.org/10.36233/0372-9311-2020-97-3-10Abstract
References
1. Hobby G.L., Meyer K., Chaffee E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. NY. 1942; 50(2): 281-5. DOI: http://doi.org/10.3181/00379727-50-13773
2. Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 1944; 244(6320): 497-500. DOI: http://doi.org/10.1016/S0140-6736(00)74210-3
3. van den Bergh B., Michiels J.E., Fauvart M., Michiels J. Should we develop screens for multi-drug antibiotic tolerance? Expert. Rev. Anti. Infect. Ther. 2016; 14(7): 613-16. DOI: http://doi.org/10.1080/14787210.2016.1194754
4. Rehab Mahmoud abd El-Baky. The future challenges facing antimicrobial therapy: resistance and persistence. Am. J. Microbiol. Res. 2016; 4(1): 1-15. DOI: http://doi.org/10.12691/ajmr-4-1-1
5. Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004; 305(5690): 1622-5. DOI: http://doi.org/10.1126/science.1099390
6. Lewis K. Persister cells. Annu. Rev. Microbiol. 2010; 64: 357- 72. DOI: http://doi.org/10.1146/annurev.micro.112408.134306
7. van Teeseling M.C.F., de Pedro M.A., Cava F. Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 2017; 8: 1264. DOI: http://doi.org/10.3389/fmicb.2017.01264
8. Kysela D.T., Randich A.M., Caccamo P.D., Brun Y.V. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biol. 2016; 14(10): e1002565. DOI: http://doi.org/10.1371/journal.pbio.1002565
9. Kawai Y., Mercier R., Errington J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 2014; 24(8): 863-7. DOI: http://doi.org/10.1016/j.cub.2014.02.053
10. Harms A., Maisonneuve E., Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016; 354(6318): aaf4268. DOI: http://doi.org/10.1126/science.aaf4268
11. Maisonneuve E., Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014; 157(3): 539-48. DOI: http://doi.org/10.1016/j.cell.2014.02.050
12. Orman M.A., Brynildsen M.P. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat. Commun. 2015; 6: 7983. DOI: http://doi.org/10.1038/ncomms8983
13. Randich A.M., Brun Y.V. Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Front. Microbiol. 2015; 6: 580. DOI: http://doi.org/10.3389/fmicb.2015.00580
14. Stubbendieck R.M., Straight P.D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 2016; 198(16): 2145-55. DOI: http://doi.org/10.1128/JB.00275-16
15. Gaivão M., Dionisio F., Gjini E. Transmission fitness in cocolonization and the persistence of bacterial pathogens. Bull. Math. Biol. 2017; 79(9): 2068-87. DOI: http://doi.org/10.1007/s11538-017-0320-3
16. Dorosky R.J., Pierson L.S., Pierson E.A. Pseudomonas chlororaphis produces multiple R-Tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Appl. Environ. Microbiol. 2018; 84(18): e01230- 18. DOI: http://doi.org/10.1128/AEM.01230-18
17. Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017; 15(8): 453-64. DOI: http://doi.org/10.1038/nrmicro.2017.42
18. Grant S.S., Hung D.T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013; 4(4): 273-83. DOI: http://doi.org/10.4161/viru.23987
19. Randall R.E., Griffin D.E. Within host RNA virus persistence: mechanisms and consequences. Curr. Opin. Virol. 2017; 23: 35- 42. DOI: http://doi.org/10.1016/j.coviro.2017.03.001
20. Böhm L., Torsin S., Tint S.H., Eckstein M.T., Ludwig T., Pérez J.C. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. 2017; 13(10): e1006699. DOI: http://doi.org/10.1371/journal.ppat.1006699
21. Codony F., Miranda A.M., Mas J. Persistence and proliferation of some unicellular algae in drinking water systems as result of their heterotrophic metabolism: short communication. Water SA. 2003; 29(1): 113-6. DOI: http://doi.org/10.4314/wsa.v29i1.4953
22. Pearl Mizrahi S., Gefen O., Simon I., Balaban N.Q. Persistence to anti-cancer treatments in the stationary to proliferating transition. Cell Cycle. 2016; 15(24): 3442-53. DOI: http://doi.org/10.1080/15384101.2016.1248006
23. Long R.L., Gorecki M.J., Renton M., Scott J.K., Colville L., Goggin D.E., et al. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 2015; 90(1): 31-59. DOI: http://doi.org/10.1111/brv.12095
24. Yafremava L.S., Wielgos M., Thomas S., Nasir A., Wang M., Mittenthal J.E., et al. A general framework of persistence strategies for biological systems helps explain domains of life. Front. Genet. 2013; 4: 16. DOI: http://doi.org/10.3389/fgene.2013.00016
25. van Boxtel C., van Heerden J.H., Nordholt N., Schmidt P., Bruggeman F.J. Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface. 2017; 14(132): 20170141. DOI: http://doi.org/10.1098/rsif.2017.0141
26. Smith S.E. Organisms as persisters. Theor. Pract. Biol. 2017; 9(14). DOI: http://doi.org/10.3998/ptb.6959004.0009.014
27. Pu Y., Ke Y., Bai F. Active efflux in dormant bacterial cells — new insights into antibiotic persistence. Drug. Resist. Updat. 2017; 30: 7-14. DOI: http://doi.org/10.1016/j.drup.2016.11.002
28. Kim J.S., Wood T.K. Tolerant, growing cells from nutrient shifts are not persister cells. mBio. 2017; 8(2): e00354-17. DOI: http://doi.org/10.1128/mBio.00354-1718. Available at: http://mbio.asm.org/content/8/2/e00354-17.long
29. Ayrapetyan M., Williams T.C., Baxter R., Oliver J.D. Viable but non-culturable and persister cells coexist stochastically and are induced by human serum. Infect. Immun. 2015; 83(11): 4194- 03. DOI: http://doi.org/10.1128/IAI.00404-15
30. Ayrapetyan M., Williams T., Oliver J.D. Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 2018; 200(20): e00249-18. DOI: http://doi.org/10.1128/JB.00249-18
31. Amato S.M., Fazen C.H., Henry T.C., Mok W.W., Orman M.A., Sandvik E.L., et al. The role of metabolism in bacterial persistence. Front. Microbiol. 2014; 5: 70. DOI: http://doi.org/10.3389/fmicb.2014.00070
32. Ishii S., Tago K., Senoo K. Single-cell analysis and isolation for microbiology and biotechnology: Methods and applications. Appl. Microbiol. Biotechnol. 2010; 86(5): 1281-92. DOI: http://doi.org/10.1007/s00253-010-2524-4.
33. Li M., Xu J., Romero-Gonzalez M., Banwart S.A., Huang W.E. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 2012; 23(1): 56-63. DOI: http://doi.org/10.1016/j.copbio.2011.11.019
34. Mazutis L., Gilbert J., Ung W.L., Weitz D.A., Griffiths A.D., Heyman J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013; 8(5): 870-91. DOI: http://doi.org/10.1038/nprot.2013.046
35. Stuart T., Satija R. Integrative single-cell analysis. Nat. Rev. Genet. 2019; 20(5): 257-72. DOI: http://doi.org/10.1038/s41576-019-0093-7
36. Peterson V.M., Zhang K.X., Kumar N., Wong J., Li L., Wilson D.C., Moore R., et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 2017; 35(10): 936-9. DOI: http://doi.org/10.1038/nbt.3973
37. Ramani V., Deng X., Qiu R., Gunderson K.L., Steemers F.J., Disteche C.M., et al. Massively multiplex single-cell Hi-C. Nat. Methods. 2017; 14(3): 263-6. DOI: http://doi.org/10.1038/nmeth.4155
38. Tóth E.N., Lohith A., Mondal M., Guo J., Fukamizu A., Pourmand N. Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. J. Biol. Chem. 2018; 293(13): 4940-51. DOI: http://doi.org/10.1074/jbc.M117.800763
39. Hong-Geller E., Micheva-Viteva S.N. Targeting bacterial persistence to develop therapeutics against infectious disease. DOI: http://doi.org/10.5772/59404 Available at: https:// www.intechopen.com/books/drug-discovery-and-development-from-molecules-to-medicine/targeting-bacterial-persistence-to-develop-therapeutics-against-infectious-disease
40. Lin J.M., eds. Microfluidics for Single-Cell Analysis. Beijing, China: Springer Singapore; 2019. DOI: http://doi.org/10.1007/978-981-32-9729-6
41. Michiels J.E., van den Bergh B., Verstraeten N., Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug. Resist. Updat. 2016; 29: 76-89. DOI: http://doi.org/10.1016/j.drup.2016.10.002
42. Tian C., Semsey S., Mitarai N. Synchronized switching of multiple toxin-antitoxin modules by (p)ppGpp fluctuation. Nucleic. Acids. Res. 2017; 45(14): 8180-9. DOI: http://doi.org/10.1093/nar/gkx552
43. Svenningsen M.S., Veress A., Harms A., Mitarai N., Semsey S. Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells. Sci. Rep. 2019; 9(1): 6056. DOI: http://doi.org/10.1038/s41598-019-42403-7
44. Wood T.K. Combatting bacterial persister cells. Biotechnol. Bioeng. 2016; 113(3): 476-83. DOI: http://doi.org/10.1002/bit.25721
45. Maisonneuve E., Castro-Camargo M., Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2013; 154(5): 1140-50. DOI: http://doi.org/10.1016/j.cell.2013.07.048
46. Manav M.C., Beljantseva J., Bojer M.S., Tenson T., Ingmer H., Hauryliuk V., et al. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J. Biol. Chem. 2018; 293(9): 3254-64. DOI: http://doi.org/10.1074/jbc.RA117.001374
47. Syal K., Flentie K., Bhardwaj N., Maiti K., Jayaraman N., Stallings C.L., et al. Synthetic (p)ppGpp analogue is an inhibitor of stringent response in mycobacteria. Antimicrob. Agents. Chemother. 2017; 61(6): e00443-17. DOI: http://doi.org/10.1128/AAC.00443-17
48. Hauryliuk V., Atkinson G.C., Murakami K.S., Tenson T., Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 2015; 13(5): 298- 09. DOI: http://doi.org/10.1038/nrmicro3448
49. Ogura T., Hiraga S. Mini-F plasmid genes that couples host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA. 1983; 80(15): 4784-8. DOI: http://doi.org/10.1073/pnas.80.15.4784
50. Page R., Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 2016; 12(4): 208-14. DOI: http://doi.org/10.1038/nchembio.2044
51. van Melderen L. Toxin-antitoxin systems: why so many, what for? Curr. Opin. Microbiol. 2010; 13(6): 781-5. DOI: http://doi.org/10.1016/j.mib.2010.10.006
52. Lee K.Y., Lee B.J. Structure, biology, and therapeutic application of toxin-antitoxin systems in pathogenic bacteria. Toxins. 2016; 8(10): 305. DOI: http://doi.org/10.3390/toxins8100305
53. Maleki A., Ghafourian S., Pakzad I., Badakhsh B., Sadeghifard N. MazE antitoxin of toxin-antitoxin system and fbpA as reliable targets to eradication of Neisseria meningitidis. Curr. Pharm. Des. 2018; 24(11): 1204‐10. DOI: http://doi.org/10.2174/1381612824666171213094730
54. Cui P., Xu T., Zhang W.H., Zhang Y. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance. Yi Chuan. 2016; 38(10): 859-71. DOI: http://doi.org/10.16288/j.yczz.16-213
55. Chowdhury N., Wood T.L., Martínez-Vázquez M., García-Contreras R., Wood T.K. DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol. Bioeng. 2016; 113(9): 1984- 92. DOI: http://doi.org/10.1002/bit.25963
56. Conlon B.P., Nakayasu E.S., Fleck L.E., LaFleur M.D., Isabella V.M., Coleman K., et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013; 503(7476): 365-70. DOI: http://doi.org/10.1038/nature12790
57. Równicki M., Pieńko T., Czarnecki J., Kolanowska M., Bartosik D., Trylska J. Artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems by antisense peptide nucleic acids as an antibacterial strategy. Front. Microbiol. 2018; 9: 2870. DOI: http://doi.org/10.3389/fmicb.2018.02870
События
-
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38 -
Журналы НЦЭСМП приняты в Scopus >>>
27 мая 2025 | 12:35 -
К платформе Elpub присоединился журнал « Islamology» >>>
26 мая 2025 | 13:52 -
Журнал «Сибнейро» теперь на Elpub >>>
16 мая 2025 | 11:08 -
Журнал «Фундаментальная и клиническая медицина» принят в DOAJ >>>
16 мая 2025 | 11:07