Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 23-28

ВЛИЯНИЕ ПРОТИВОГРИППОЗНЫХ ВАКЦИН НА СУБПОПУЛЯЦИИ ДЕНДРИТНЫХ КЛЕТОК КРОВИ

Хромова Е. А., Ахматова Э. А., Сходова С. А., Семочкин И. А., Хоменков В. Г., Ахматова Н. К., Костинов М. П.

https://doi.org/10.36233/0372-9311-2016-5-23-28

Аннотация

Цель. Исследование влияния сплит-вакцины Вакситрип, субъединичной Инфлювак и иммуноадъювантной вакцины Гриппол плюс на содержание в крови миелоидных (mDC) и плазмацитоидных (pDC) дендритных клеток (ДК) у вакцинированных здоровых женщин. Материалы и методы. Исследовали кровь 30 здоровых женщин 18 - 50 лет через 7 и 30 дней после вакцинации. Проводили иммунофенотипирование pDC (CD14+CD16-/ CD85k(ILT3)-PE/CD123-PC5) и mDC (CD14+CD16-/CD85k(ILT3)-PE/CD33-PC5) с использованием МКАД (Beckman Coulter, Франция) на проточном цитометре Cytomix FC-500 Beckman Coulter, США). Результаты. Использование безадъювантных вакцин Ваксигрип и Инфлювак приводило к повышению численности mDC и pDC (р<0,05) в крови вакцинированных только на 7 сутки наблюдения. Гриппол плюс приводил к более существенному (в 2,2 - 3,6 раза, р<0,05) увеличению субпопуляций ДК (по сравнению с безадъювантными вакцинами) как на 7 сутки, так и через месяц после вакцинации. Заключение. Вакцинация гриппозными вакцинами активирует врожденные эффекторы - первое звено на пути проникновения инфекции - дендритные клетки как миелоидного, так и лимфоидного происхождения. При этом более выраженный и продолжительный эффект такой активации наблюдается при использовании иммуноадъювантной вакцины по сравнению с субъединичной и сплит-вакцинами.
Список литературы

1. Bergmann-Leitner E.S., Leitner W.W., Tsokos G.C. Complement 3d: from molecular adjuvant to target of immune escape mechanisms. Clin. Immunol. 2006, Nov; 121 (2): 177-185.

2. Duraisingham S.S., Rouphael N., Cavanagh M.M. et al. Systems biology of vaccination in the elderly. Curr. Top. Microbiol. Immunol. 2013, 363: 117-142.

3. Geginat J., Nizzoli G., Paroni M. et al. Immunity to pathogens taught by specialized human dendritic cell subsets. Front. Immunol. 2015, Oct 13; 6: 527.

4. Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, Apr; 16 (4): 343-353.

5. Kang I., Hong M.S., Nolasco H. et al. Age-associated change in the frequency of memory CD4+ T cells impairs longterm CD4+ T cell responses to influenza vaccine. J. Immunol. 2004, 173:673-681.

6. Martins K.A., Bavari S., Salazar A.M. Vaccine adjuvant uses of poly-IC and derivatives. Expert. Rev. Vaccines. 2015, Mar; 14 (3): 447-459.

7. Moyer T.J., Zmolek A.C., Irvine D.J. Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Invest. 2016, Mar 1; 126 (3): 799-808.

8. Sasaki S., Sullivan M., Narvaez C.F. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J. Clin. Invest. 2011, 121: 3109-3119.

9. Schenten D., Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 2011, 109: 87-124.

10. Schettinil J., Mukheijee P. Physiological role of plasmacytoid dendritic cells and their potential use in cancer immunity. Clin. Dev. Immunol. 2008;2008:106321. doi: 10.1155/2008/106321. ll.Schijns V. Immunological concepts of vaccine adjuvant activity. Commentary. Curr. Op. Immunol. 2000, 12: 456-463.

11. Trumpfheller C., Longhi M.P., Caskey M. et al. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J. Intern. Med. 2012, Feb; 271 (2): 183-192.

12. Wagar L.E., Gentleman B., Pircher H. et alflnfluenza-specific T cells from older people are enriched in the late effector subset and their presence inversely correlates with vaccine response. PLoS ONE. 2011, 6: e23698.

13. Wang C., Liu R, Zhuang Y. et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine. 2014, Sep 22; 32 (42): 5475-5483.

14. Yoo S., Ha S.J. Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw. 2016, Feb; 16 (1): 52-60.

Journal of microbiology, epidemiology and immunobiology. 2016; : 23-28

EFFECT OF INFLUENZA VACCINES ON SUBPOPULATIONS OF BLOOD DENDRITIC CELLS

Chromova E. A., Akhmatova E. A., Skhodova S. A., Semochkin I. A., Khomenkov V. G., Akhmatova N. K., Kostinov M. P.

https://doi.org/10.36233/0372-9311-2016-5-23-28

Abstract

Aim. Study the effect of Vaxigrip split, Influvac subunit and Grippol plus immune-adjuvanted vaccines on the content of myeloid (mDC) and plasmacytoid (pDC) dendritic cells (DC) in blood of vaccinated healthy women. Materials and methods. Blood of 30 healthy women aged 18-50 years was studied at days 7 and 30 after the vaccination. pDC (CD14+CD16-/CD85k(ILT3)-PE/ CD123-PC5) and mDC (CD14+CD16-/CD85k(ILT3)-PE/CD33-PC5) immune phenotyping was carried out using mAbs (Beckman Coulter, France) and flow cytometer Cytomix FC-500 (Beckman Coulter, USA). Results. Use of unadjuvanted vaccines Vaxigrip and Influvac resulted in an increase of the numbers of mDC and pDC (p<0.05) in blood of the vaccinated only at day 7 of the observation. Grippol resulted in a more significant (2.2 - 3.6 times, p<0.05) increase of DC subpopulations (compared with unadjuvanted vaccines) at both day 7 and a month after the vaccination. Conclusion. Influenza vaccination activated innate effectors - the first component on the way of infection penetration - dendritic cells of both myeloid and lymphoid origin. Wherein, a more pronounced and prolonged effect of such activation is observed when immune-adjuvanted vaccine is used compared with subunit and split vaccines.
References

1. Bergmann-Leitner E.S., Leitner W.W., Tsokos G.C. Complement 3d: from molecular adjuvant to target of immune escape mechanisms. Clin. Immunol. 2006, Nov; 121 (2): 177-185.

2. Duraisingham S.S., Rouphael N., Cavanagh M.M. et al. Systems biology of vaccination in the elderly. Curr. Top. Microbiol. Immunol. 2013, 363: 117-142.

3. Geginat J., Nizzoli G., Paroni M. et al. Immunity to pathogens taught by specialized human dendritic cell subsets. Front. Immunol. 2015, Oct 13; 6: 527.

4. Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, Apr; 16 (4): 343-353.

5. Kang I., Hong M.S., Nolasco H. et al. Age-associated change in the frequency of memory CD4+ T cells impairs longterm CD4+ T cell responses to influenza vaccine. J. Immunol. 2004, 173:673-681.

6. Martins K.A., Bavari S., Salazar A.M. Vaccine adjuvant uses of poly-IC and derivatives. Expert. Rev. Vaccines. 2015, Mar; 14 (3): 447-459.

7. Moyer T.J., Zmolek A.C., Irvine D.J. Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Invest. 2016, Mar 1; 126 (3): 799-808.

8. Sasaki S., Sullivan M., Narvaez C.F. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J. Clin. Invest. 2011, 121: 3109-3119.

9. Schenten D., Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 2011, 109: 87-124.

10. Schettinil J., Mukheijee P. Physiological role of plasmacytoid dendritic cells and their potential use in cancer immunity. Clin. Dev. Immunol. 2008;2008:106321. doi: 10.1155/2008/106321. ll.Schijns V. Immunological concepts of vaccine adjuvant activity. Commentary. Curr. Op. Immunol. 2000, 12: 456-463.

11. Trumpfheller C., Longhi M.P., Caskey M. et al. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J. Intern. Med. 2012, Feb; 271 (2): 183-192.

12. Wagar L.E., Gentleman B., Pircher H. et alflnfluenza-specific T cells from older people are enriched in the late effector subset and their presence inversely correlates with vaccine response. PLoS ONE. 2011, 6: e23698.

13. Wang C., Liu R, Zhuang Y. et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine. 2014, Sep 22; 32 (42): 5475-5483.

14. Yoo S., Ha S.J. Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw. 2016, Feb; 16 (1): 52-60.