Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 202-213

Предварительный клинико-эпидемиологический анализ первых 1000 случаев COVID-19 у детей в Московской области

Мескина Елена Руслановна

https://doi.org/10.36233/0372-9311-2020-97-3-2

Аннотация

Актуальность. Новая коронавирусная инфекция, вызванная SARS-CoV-2 (COVID-19), продолжает распространяться по миру, однако эпидемиологическая ситуация отличается в разных странах. Представляет интерес оценить педиатрическую заболеваемость в отдельном субъекте России — Московской области (МО), тесно взаимосвязанной с Москвой (где зарегистрировано максимальное количество случаев COVID-19 в России). Оценка эпидемиологических данных интересна в связи с поздним началом эпидемического подъема, внедрением на ранних этапах превентивного локдауна, широким тестированием всех выявленных контактных лиц.

Цель работы — оценить педиатрическую заболеваемость COVID-19 с определением ее ведущих клинико-эпидемиологических характеристик на материалах официального мониторинга за текущей ситуацией в МО.

Материалы и методы. Проведен ретроспективный анализ всех педиатрических случаев лабораторно подтвержденной COVID-19 в МО (1047 детей всех возрастов) с момента начала регистрации в порядке ежедневного мониторинга за эпидемиологической ситуацией (суммарно в течение 53 дней). Информация извлечена из базы данных Территориального управления Роспотребнадзора МО и собрана в рамках свода по форме «Ежедневный мониторинг детей с коронавирусной инфекцией», приложение ГАС «Управление» МО.

Результаты. Доля педиатрических случаев COVID-19 среди всех зарегистрированных на 06.05.2020 (16 590) составила 6,3% (95% ДИ1 5,9–6,7), общая инфицированность педиатрической популяции субъекта — 0,07% (0,06–0,09). Средний индекс репродукции колебался в пределах от 4,8 (на этапе двухнедельного экспоненциального роста) до 2,7 (в последующем периоде более медленного прироста заболеваемости) и составил в среднем 3,8 (3,0–4,57). Коэффициент очаговости COVID-19 среди детей был высоким — 82,8% (79,7–85,6) с небольшим средним числом выявленных случаев в очаге — 1,21 (1,16–1,26). Значительно преобладали бессимптомные формы COVID-19 — 62,2% (59,2–65,1), в том числе у новорожденных — 73,1%, с низкой частотой тяжелых форм — 0,38% (0,35–0,41) и низким индексом госпитализации — 12,0 (10,1–14,2). Летальность отсутствовала. Средний возраст заболевших и инфицированных — 8 [4; 13] лет. Мальчики преобладали незначительно (53,2%).

Выводы. Прослеживается отчетливая этапность развития эпидемической ситуации среди детей в МО. Передача COVID-19 в детской популяции осуществлялась главным образом в семейных очагах с вторичным распространением. Благодаря ранним превентивным мерам и широкому тестированию период экспоненциального роста был коротким, удалось избежать крупных очагов инфекции, дополнительно выявлено 17,2% очагов COVID-19, в которых первым заболевшим был ребенок. Необходимо в дальнейшем соблюдать дистанцирование и обеспечивать эффективную изоляцию заболевших детей и взрослых, поскольку вероятность высокой педиатрической заболеваемости может запаздывать по сравнению со взрослыми.

Список литературы

1. Pachetti M., Marini B., Benedetti F., Giudici F., Mauro E., Storici P., et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 2020; 18(1): 179. DOI: http://doi.org/10.1186/s12967-020-02344-6

2. Bajaj A., Purohit H.J. Understanding SARS-CoV-2: genetic diversity, transmission and cure in human. Indian J. Microbiol. 2020; 1‐4. DOI: http://doi.org/10.1007/s12088-020-00869-4

3. Shen Z., Xiao Y., Kang L., Ma W., Shi L., Zhang L., et al. Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Clin. Infect. Dis. 2020; ciaa203. DOI: http://doi.org/10.1093/cid/ciaa203

4. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA. 2020; 117(17): 9241‐3. DOI: http://doi.org/10.1073/pnas.2004999117

5. Ludvigsson J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020; 109(6): 1088‐95. DOI: http://doi.org/10.1111/apa.15270

6. Liguoro I., Pilotto C., Bonanni M., Ferrari M.E., Pusiol A., Nocerino A., et al. SARS-COV-2 infection in children and newborns: a systematic review. Eur. J. Pediatr. 2020; 1-18. DOI: http://doi.org/10.1007/s00431-020-03684-7

7. Morand A., Fabre A., Minodier P., Boutin A., Vanel N., Bosdure E., et al. COVID-19 virus and children: What do we know? Arch. Pediatr. 2020; 27(3): 117‐8. DOI: http://doi.org/10.1016/j.arcped.2020.03.001

8. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020; 109(6): 1082‐3. DOI: http://doi.org/10.1111/apa.15271

9. Dong Y., Mo X., Hu Y., Qi X., Jiang F., Jiang Z. Epidemiology of COVID-19 among children in China. Pediatrics. 2020; 145(6): e20200702. DOI: http://doi.org/10.1542/peds.2020-0702

10. Keeling M.J., Rohani P. Modelling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press; 2008.

11. Nishiura H., Linton N.M., Akhmetzhanov A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020; 93: 284‐6. DOI: http://doi.org/10.1016/j.ijid.2020.02.060

12. Андерсон Р.М., Мэй Р.М. Инфекционные болезни человека: динамика и контроль. Пер. с англ. М.: Мир, Научный мир; 2004.

13. Слободенюк А.В., Косова А.А., Ан Р.Н. Эпидемиологический анализ: Учебное пособие. Екатеринбург; 2015.

14. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199-207. DOI: http://doi.org/10.1056/NEJMoa2001316

15. She J., Liu L., Liu W. COVID-19 epidemic: Disease characteristics in children. J. Med. Virol. 2020; 10.1002/jmv.25807. DOI: http://doi.org/10.1002/jmv.25807

16. He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020; 26(5): 672-5. DOI: http://doi.org/10.1038/s41591-020-0869-5

17. Ganyani T., Kremer C., Chen D., Torneri A., Faes C., Wallinga J., et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020; 25(17): 2000257. DOI: http://doi.org/10.2807/1560-7917.S.2020.25.17.2000257

18. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020; 382(12): 1177-9. DOI: http://doi.org/10.1056/NEJMc2001737

19. Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020; 20(4): 411‐2. DOI: http://doi.org/10.1016/S1473-3099(20)30113-4

20. Zheng S., Fan J., Yu F., Feng B., Lou B., Zou Q., et al. Viral load dynamics and disease severity in patients infected with SARSCoV-2 in Zhejiang province, China, January – March 2020: retrospective cohort study. BMJ. 2020; 369: m1443. DOI: http://doi.org/10.1136/bmj.m1443

21. Yu F., Yan L., Wang N., Yang S., Wang L., Tang Y., et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 2020; ciaa345. DOI: http://doi.org/10.1093/cid/ciaa345

22. Yuan C., Zhu H., Yang Y., Cai X., Xiang F., Wu H., et al. Viral loads in throat and anal swabs in children infected with SARSCoV-2. Emerg. Microbes Infect. 2020; 1-17. DOI: http://doi.org/10.1080/22221751.2020.1771219

23. Pan A., Liu L., Wang C., Guo H., Hao X., Wang Q., et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020; 323(19): 1-9. DOI: http://doi.org/10.1001/jama.2020.6130

24. Cope R.C., Ross J.V., Chilver M., Stocks N.P., Mitchell L. Characterising seasonal influenza epidemiology using primary care surveillance data. PLoS Comput. Biol. 2018; 14(8): e1006377. DOI: http://doi.org/10.1371/journal.pcbi.1006377

25. Sanche S., Lin Y.T., Xu C., Romero-Severson E., Hengartner N., Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020; 26(7): 10.3201/eid2607.200282. DOI: http://doi.org/10.3201/eid2607.200282

26. Zhao S., Lin Q., Ran J., Musa S.S., Yang G., Wang W., et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020; 92: 214-7. DOI: http://doi.org/10.1016/j.ijid.2020.01.050

27. Choi S., Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health. 2020; 42: e2020011. DOI: http://doi.org/10.4178/epih.e2020011

28. Yuan J., Li M., Lv G., Lu Z.K. Monitoring transmissibility and mortality of COVID-19 in Europe. Int. J. Infect. Dis. 2020; 95: 311‐5. DOI: http://doi.org/10.1016/j.ijid.2020.03.050

29. Karadag E. Increase in Covid-19 cases and case fatality and case recovery rates in Europe: a cross temporal meta-analysis. J. Med. Virol. 2020; 10.1002/jmv.26035. DOI: http://doi.org/10.1002/jmv.26035

30. Shodan H., Wilder-Smith A., Osman S., Farooq Z., Rocklöv J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Euro Surveill. 2020; 25(13): 2000280. DOI: http://doi.org/10.2807/1560-7917. ES.2020.25.13.2000280

31. Kim S., Seo Y.B., Jung E. Prediction of COVID-19 transmission dynamics using a mathematical model considering behavior changes in Korea. Epidemiol. Health. 2020; 42: e2020026. DOI: http://doi.org/10.4178/epih.e2020026

32. Тамм М.В. Коронавирусная инфекция в Москве: прогнозы и сценарии. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13(1): 43-51. DOI: http://doi.org/10.17749/2070-4909.2020.13.1.43-51

33. Bi Q., Wu Y., Mei S., Ye C., Zou X., Zhang Z., et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis. 2020; S1473-3099(20)30287-5. DOI: http://doi.org/10.1016/S1473-3099(20)30287-5

34. Livingston E., Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020; 10.1001/jama.2020.4344. DOI: http://doi.org/10.1001/jama.2020.4344

35. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) – United States, February 12 – March 16, 2020. MMWR Morb. Mortal. Wkly Rep. 2020; 69(12): 343‐6. DOI: http://doi.org/10.15585/mmwr.mm6912e2

Journal of microbiology, epidemiology and immunobiology. 2020; 97: 202-213

Preliminary Clinical and Epidemiological Analysis of the First 1,000 Pediatric COVID-19 Cases in Moscow Region

Meskina Elena R.

https://doi.org/10.36233/0372-9311-2020-97-3-2

Abstract

Rationale. The novel coronavirus infection caused by SARS-CoV-2 (COVID-19) continues to spread worldwide, though the epidemiological situation varies across countries. It is of interest to estimate the pediatric incidence in a separate constituent entity of the Russian Federation, Moscow Region (MR) closely connected with Moscow (accounting for the highest number of COVID-19 cases in Russia). Assessment of the epidemiological data is interesting due to the late onset of the epidemic outbreak, the preventive lockdown imposed during the early stages, and extensive testing of all the identified contacts.

Purpose of the study: Assessment of the pediatric incidence of COVID-19, including identification of its main clinical and epidemiological characteristics, based on the monitoring data for the current situation in MR.

Materials and methods. A retrospective analysis of all pediatric cases of laboratory-confirmed COVID-19 in MR (1,047 children of all ages) was performed. The time span covered the data of the daily monitoring of the epidemiological situation from the beginning of reporting (53 days in total). The information was obtained from the database of the Rospotrebnadzor Territorial Administration of MR and collected in compliance with the regulations on Daily Monitoring of Children with Coronavirus Infection, Management Section, State Information System, MR.

Results. The pediatric cases of COVID-19 accounted for 6.3% (95% CI2 5.9–6.7) of all the cases reported by 6/5/2020 (16,590); the total infection rate of the pediatric population in the region was 0.07% (0.06–0.09). The basic reproduction number ranged from 4.8 (during the two-week exponential growth phase) to 2.7 (during the later period characterized by a slowdown in the incidence rate) and averaged 3.8 (3.0–4.57). The clustering rate of COVID-19 among children was high, reaching 82.8% (79.7–85.6) with a small average number of cases detected in the cluster — 1.21 (1.16–1.26). Asymptomatic COVID-19 cases prevailed significantly, amounting to 62.2% (59.2–65.1), including 73.1% in newborns; severe cases accounted for 0.38% (0.35–0.41) and hospitalized cases totaled 12.0 (10.1–14.2). No death cases were reported. The mean age of the diseased and infected was 8 [4; 13] years old. Boys prevailed insignificantly (53.2%).

Conclusion. There is a distinct stage-by-stage development of the epidemic situation among children in MR. In the pediatric population, COVID-19 was generally acquired from a secondary household transmission within family clusters. Early preventive measures and extensive testing helped to reduce the period of exponential growth and, therefore, to avoid large clusters of infection. In addition, 17.2% of the COVID-19 clusters were identified as those where the child was the first to become sick. In the future, it is necessary to practice distancing and provide effective isolation of diseased children and adults, since the high rate of incidence in children can lag behind the incidence rate in adults.

References

1. Pachetti M., Marini B., Benedetti F., Giudici F., Mauro E., Storici P., et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 2020; 18(1): 179. DOI: http://doi.org/10.1186/s12967-020-02344-6

2. Bajaj A., Purohit H.J. Understanding SARS-CoV-2: genetic diversity, transmission and cure in human. Indian J. Microbiol. 2020; 1‐4. DOI: http://doi.org/10.1007/s12088-020-00869-4

3. Shen Z., Xiao Y., Kang L., Ma W., Shi L., Zhang L., et al. Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Clin. Infect. Dis. 2020; ciaa203. DOI: http://doi.org/10.1093/cid/ciaa203

4. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA. 2020; 117(17): 9241‐3. DOI: http://doi.org/10.1073/pnas.2004999117

5. Ludvigsson J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020; 109(6): 1088‐95. DOI: http://doi.org/10.1111/apa.15270

6. Liguoro I., Pilotto C., Bonanni M., Ferrari M.E., Pusiol A., Nocerino A., et al. SARS-COV-2 infection in children and newborns: a systematic review. Eur. J. Pediatr. 2020; 1-18. DOI: http://doi.org/10.1007/s00431-020-03684-7

7. Morand A., Fabre A., Minodier P., Boutin A., Vanel N., Bosdure E., et al. COVID-19 virus and children: What do we know? Arch. Pediatr. 2020; 27(3): 117‐8. DOI: http://doi.org/10.1016/j.arcped.2020.03.001

8. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020; 109(6): 1082‐3. DOI: http://doi.org/10.1111/apa.15271

9. Dong Y., Mo X., Hu Y., Qi X., Jiang F., Jiang Z. Epidemiology of COVID-19 among children in China. Pediatrics. 2020; 145(6): e20200702. DOI: http://doi.org/10.1542/peds.2020-0702

10. Keeling M.J., Rohani P. Modelling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press; 2008.

11. Nishiura H., Linton N.M., Akhmetzhanov A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020; 93: 284‐6. DOI: http://doi.org/10.1016/j.ijid.2020.02.060

12. Anderson R.M., Mei R.M. Infektsionnye bolezni cheloveka: dinamika i kontrol'. Per. s angl. M.: Mir, Nauchnyi mir; 2004.

13. Slobodenyuk A.V., Kosova A.A., An R.N. Epidemiologicheskii analiz: Uchebnoe posobie. Ekaterinburg; 2015.

14. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199-207. DOI: http://doi.org/10.1056/NEJMoa2001316

15. She J., Liu L., Liu W. COVID-19 epidemic: Disease characteristics in children. J. Med. Virol. 2020; 10.1002/jmv.25807. DOI: http://doi.org/10.1002/jmv.25807

16. He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020; 26(5): 672-5. DOI: http://doi.org/10.1038/s41591-020-0869-5

17. Ganyani T., Kremer C., Chen D., Torneri A., Faes C., Wallinga J., et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020; 25(17): 2000257. DOI: http://doi.org/10.2807/1560-7917.S.2020.25.17.2000257

18. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020; 382(12): 1177-9. DOI: http://doi.org/10.1056/NEJMc2001737

19. Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020; 20(4): 411‐2. DOI: http://doi.org/10.1016/S1473-3099(20)30113-4

20. Zheng S., Fan J., Yu F., Feng B., Lou B., Zou Q., et al. Viral load dynamics and disease severity in patients infected with SARSCoV-2 in Zhejiang province, China, January – March 2020: retrospective cohort study. BMJ. 2020; 369: m1443. DOI: http://doi.org/10.1136/bmj.m1443

21. Yu F., Yan L., Wang N., Yang S., Wang L., Tang Y., et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 2020; ciaa345. DOI: http://doi.org/10.1093/cid/ciaa345

22. Yuan C., Zhu H., Yang Y., Cai X., Xiang F., Wu H., et al. Viral loads in throat and anal swabs in children infected with SARSCoV-2. Emerg. Microbes Infect. 2020; 1-17. DOI: http://doi.org/10.1080/22221751.2020.1771219

23. Pan A., Liu L., Wang C., Guo H., Hao X., Wang Q., et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020; 323(19): 1-9. DOI: http://doi.org/10.1001/jama.2020.6130

24. Cope R.C., Ross J.V., Chilver M., Stocks N.P., Mitchell L. Characterising seasonal influenza epidemiology using primary care surveillance data. PLoS Comput. Biol. 2018; 14(8): e1006377. DOI: http://doi.org/10.1371/journal.pcbi.1006377

25. Sanche S., Lin Y.T., Xu C., Romero-Severson E., Hengartner N., Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020; 26(7): 10.3201/eid2607.200282. DOI: http://doi.org/10.3201/eid2607.200282

26. Zhao S., Lin Q., Ran J., Musa S.S., Yang G., Wang W., et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020; 92: 214-7. DOI: http://doi.org/10.1016/j.ijid.2020.01.050

27. Choi S., Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health. 2020; 42: e2020011. DOI: http://doi.org/10.4178/epih.e2020011

28. Yuan J., Li M., Lv G., Lu Z.K. Monitoring transmissibility and mortality of COVID-19 in Europe. Int. J. Infect. Dis. 2020; 95: 311‐5. DOI: http://doi.org/10.1016/j.ijid.2020.03.050

29. Karadag E. Increase in Covid-19 cases and case fatality and case recovery rates in Europe: a cross temporal meta-analysis. J. Med. Virol. 2020; 10.1002/jmv.26035. DOI: http://doi.org/10.1002/jmv.26035

30. Shodan H., Wilder-Smith A., Osman S., Farooq Z., Rocklöv J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Euro Surveill. 2020; 25(13): 2000280. DOI: http://doi.org/10.2807/1560-7917. ES.2020.25.13.2000280

31. Kim S., Seo Y.B., Jung E. Prediction of COVID-19 transmission dynamics using a mathematical model considering behavior changes in Korea. Epidemiol. Health. 2020; 42: e2020026. DOI: http://doi.org/10.4178/epih.e2020026

32. Tamm M.V. Koronavirusnaya infektsiya v Moskve: prognozy i stsenarii. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2020; 13(1): 43-51. DOI: http://doi.org/10.17749/2070-4909.2020.13.1.43-51

33. Bi Q., Wu Y., Mei S., Ye C., Zou X., Zhang Z., et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis. 2020; S1473-3099(20)30287-5. DOI: http://doi.org/10.1016/S1473-3099(20)30287-5

34. Livingston E., Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020; 10.1001/jama.2020.4344. DOI: http://doi.org/10.1001/jama.2020.4344

35. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) – United States, February 12 – March 16, 2020. MMWR Morb. Mortal. Wkly Rep. 2020; 69(12): 343‐6. DOI: http://doi.org/10.15585/mmwr.mm6912e2