Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 3-11
НОВЫЙ ПОДХОД К СОСТАВЛЕНИЮ СМЕСЕЙ БАКТЕРИОФАГОВ ДЛЯ АНТИБАКТЕРИАЛЬНОЙ ТЕРАПИИ
Плетенева Е. А., Шабурова О. В., Буркальцева М. В., Крылов С. В., Каплан А. М., Чеснокова Е. Н., Полыгач О. А., Ворошилова Н. Н., Михайлова Н. А., Зверев В. В., Крылов В. Н.
https://doi.org/undefinedАннотация
Список литературы
1. Плетенева Е.А., Буркальцева М.В., Шабурова О.В., Крылов С.В., Печникова Е.В., Соколова О.С., Крылов В.Н. Новый бактериофаг TL Pseudomonas aeruginosa и его использование для поиска фагов, образующих ореолы. Генетика. 2011, 47 (1): 5-9.
2. Плетенева Е.А., Крылов С.В., Шабурова О.В., Буркальцева М.В., Мирошников К.А. Крылов В.Н. Псевдолизогения бактерий Pseudomonas aeruginosa, инфицированных phiKZ-подобными бактериофагами. Генетика. 2010, 46 (1): 26-32.
3. Плетенева Е.А., Шабурова О.В., Сыкилинда Н.Н., Мирошников К.А., Кадыков В.А., Крылов С.В., Месянжинов В.В., Крылов В.Н. Изучение разнообразия в группе фагов вида РВ1 (Myoviridae) Pseudomonas aeruginosa и их поведения на адсорбционноустойчивых мутантах бактерий. Генетика. 2008, 44 (2): 185-194.
4. Barry P.J., Jones A.M. New and emerging treatments for cystic fibrosis. Drugs. 2015, 75(11): 1165-75. doi: 10.1007/s40265-015-0424-8.
5. Chanishvili N. Phage therapy - history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus. Res. 2012, 83: 3-40.
6. Ceyssens P.J., Minakhin L., Van den Bossche A. et al. Development of giant bacteriophage tpKZ is independent of the host transcription apparatus. J Virol. 2014, 88 (18): 10501-10510.
7. Fothergill J.L., Walshaw M.J., Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur. Resp. J. 2012, 40: 227-238.
8. Fernandez L., Gooderham W.J., Bains M. et al. Adaptive resistance to the «last hope» antibiotics polymyxin В and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob. Agents Chemother. 2010, 54 (8): 3372-3382.
9. Henry M., Lavigne R., Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob. Agents Chemother. 2013, 57 (12): 5961-5968.
10. James C.E., Fothergill J.L., Kalwij H. et al. Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol. 2012, 21 (12): 216. doi: 10.1186/1471-2180-12-21.
11. Krylov V, Shaburova O., Pleteneva E. et al. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol. Sin. 2015, 30 (1): 33-44.
12. Lee J.Y., Chung E.S., Nal.Y. etal. Development of colistin resistance inpmrA-, phoP-,parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2014, Jul 2. pii: dku238.
13. Liu Y.Y., Wang Y., Walsh T.R. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 2015, Nov 18. pii: S 1473-3099( 15)00424-7. doi: 10.1016/ SI 473-3099(15)00424-7.
14. Lavigne R., Burkaltseva M.V., Robben J. et al. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology. 2003, 312 (1): 49-59.
15. Magill D.J., Shaburova O.V., Chesnokova E.N. et al. Complete nucleotide sequence of phi-CHU: a Luz241ikevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol. Lett. 2015, 362 (9). pii: fnv045. doi: 10.1093/femsle/fnv045. Epub. 2015 Mar 30.
16. Winstanley C., Langille M.G., Fothergill J.L. etal. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res. 2009, 19 (1): 12-23.
Journal of microbiology, epidemiology and immunobiology. 2016; : 3-11
NOVEL APPROACH TO COMPOSITION OF BACTERIOPHAGE MIXTURES FOR ANTIBACTERIAL THERAPY
Pleteneva E. A., Shaburova O. V., Burkaltseva M. V., Krylov S. V., Kaplan A. M., Chesnokova E. N., Polygach O. A., Voroshilova N. N., Mikhailova N. A., Zverev V. V., Krylov V. N.
https://doi.org/undefinedAbstract
References
1. Pleteneva E.A., Burkal'tseva M.V., Shaburova O.V., Krylov S.V., Pechnikova E.V., Sokolova O.S., Krylov V.N. Novyi bakteriofag TL Pseudomonas aeruginosa i ego ispol'zovanie dlya poiska fagov, obrazuyushchikh oreoly. Genetika. 2011, 47 (1): 5-9.
2. Pleteneva E.A., Krylov S.V., Shaburova O.V., Burkal'tseva M.V., Miroshnikov K.A. Krylov V.N. Psevdolizogeniya bakterii Pseudomonas aeruginosa, infitsirovannykh phiKZ-podobnymi bakteriofagami. Genetika. 2010, 46 (1): 26-32.
3. Pleteneva E.A., Shaburova O.V., Sykilinda N.N., Miroshnikov K.A., Kadykov V.A., Krylov S.V., Mesyanzhinov V.V., Krylov V.N. Izuchenie raznoobraziya v gruppe fagov vida RV1 (Myoviridae) Pseudomonas aeruginosa i ikh povedeniya na adsorbtsionnoustoichivykh mutantakh bakterii. Genetika. 2008, 44 (2): 185-194.
4. Barry P.J., Jones A.M. New and emerging treatments for cystic fibrosis. Drugs. 2015, 75(11): 1165-75. doi: 10.1007/s40265-015-0424-8.
5. Chanishvili N. Phage therapy - history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus. Res. 2012, 83: 3-40.
6. Ceyssens P.J., Minakhin L., Van den Bossche A. et al. Development of giant bacteriophage tpKZ is independent of the host transcription apparatus. J Virol. 2014, 88 (18): 10501-10510.
7. Fothergill J.L., Walshaw M.J., Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur. Resp. J. 2012, 40: 227-238.
8. Fernandez L., Gooderham W.J., Bains M. et al. Adaptive resistance to the «last hope» antibiotics polymyxin V and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob. Agents Chemother. 2010, 54 (8): 3372-3382.
9. Henry M., Lavigne R., Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob. Agents Chemother. 2013, 57 (12): 5961-5968.
10. James C.E., Fothergill J.L., Kalwij H. et al. Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol. 2012, 21 (12): 216. doi: 10.1186/1471-2180-12-21.
11. Krylov V, Shaburova O., Pleteneva E. et al. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol. Sin. 2015, 30 (1): 33-44.
12. Lee J.Y., Chung E.S., Nal.Y. etal. Development of colistin resistance inpmrA-, phoP-,parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2014, Jul 2. pii: dku238.
13. Liu Y.Y., Wang Y., Walsh T.R. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 2015, Nov 18. pii: S 1473-3099( 15)00424-7. doi: 10.1016/ SI 473-3099(15)00424-7.
14. Lavigne R., Burkaltseva M.V., Robben J. et al. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology. 2003, 312 (1): 49-59.
15. Magill D.J., Shaburova O.V., Chesnokova E.N. et al. Complete nucleotide sequence of phi-CHU: a Luz241ikevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol. Lett. 2015, 362 (9). pii: fnv045. doi: 10.1093/femsle/fnv045. Epub. 2015 Mar 30.
16. Winstanley C., Langille M.G., Fothergill J.L. etal. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res. 2009, 19 (1): 12-23.
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38