Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 88-97
РОЛЬ БИОПЛЕНОК В ВЫЖИВАЕМОСТИ И СОХРАНЕНИИ ВИРУЛЕНТНОСТИ ХОЛЕРНЫХ ВИБРИОНОВ В ОКРУЖАЮЩЕЙ СРЕДЕ И ОРГАНИЗМЕ ЧЕЛОВЕКА
Титова С. В., Алексеева Л. П., Андрусенко И. Т.
https://doi.org/10.36233/0372-9311-2016-3-88-97Аннотация
Список литературы
1. Блинкова Л.П. Перспективы использования бактериоцинов для профилактики и терапии инфекций. Журн. микробиол. 1984, 5: 10-15.
2. Голубев Б.П. Экологические аспекты распространения вибрионов Эльтор в объектах окружающей среды. Автореф. дис. канд. мед. наук. Саратов, 1993.
3. Лахтин В.М., Алешкин В.А., Лахтин М.В. и др. Лектины, адгезины и лектиновые вещества лактобацилл и бифидобактерий. Вестник РАМН. 2006, 1: 28-34.
4. Маркина О.В., Шелохович А.И., Терентьев А.Н. и др. Стабилизированные фазовые варианты Vibrio cholerae El Tor P-18895. В: Холера и патоген, для человека вибрионы. Ростов-на-Дону, Дониздат, 2014, 27: 112-114.
5. Мишанькин Б.Н., Дуванова О.В., Романова Л.В. и др. Мембранный белок ОтрТ холерного вибриона как возможный представитель омптинов семейства Vibrionaceae. Проблемы особо опасных инфекций. 2014, 3: 52-56.
6. Мишанькин Б.Н., ШиманюкН.Я., Водопьянов С.О. идр. Изучение хитинолитического комплекса холерного вибриона сероварианта 0139. Биотехнология. 2010, 1: 32-40.
7. Мишанькин Б.Н., Дуванова О.В., Шипко Е.С. и др. Система активации плазминогена у Vibrio cholerae. Журн. микробиол. 2013, 5: 13-20.
8. Сизова Ю.В., Черепахина И.Я., Балахнова В.В. идр. Вариабельность свойств, характеризующих способность к выживанию холерных вибрионов в биопленочных сообществах. Пробл. особо опасных инф. 2012, 3 (113): 54-57.
9. ШиманюкН.Я., Дуванова, О.В., Сучков И.Ю. идр. Нейраминидаза Vibrio cholerae 0139 «Бенгал»: обнаружение, очистка и некоторые свойства. Биотехнология, 1999, 3: 56-62.
10. Augustine N., Peter A.W., Kerkar S., Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr. Microbiol. 2012, 64 (4): 338-342.
11. Berk V., Fong J.C., Dempsey G.T. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science. 2012, 337 (6091): 236-239.
12. Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 2012, 14 (8): 1898-1912.
13. Boyhan S., Beyhan S., Tischler A.D. et al. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 2006, 188 (10): 3600-3613.
14. Castro-Rosas J., Escartin, E.F. Increased toleranceof Vibrio cholerae 01 to temperature, pH, or dryingassociated with colonization of shrimp carapaces. Int. J. Food Microbiol. 2005,102: 195-201.
15. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistentinfections. Science. 1999, 284: 1318-1322.
16. Emch M., Feldacker C., Yunus M. et al. Effects of global climate on infectious disease: the cholera model. Am. J. Trap. Med. Hyg. 2008, 78: 823-832.
17. Faruque S.M., Albert M.J., Mekalanos J.J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholera. Microbiol. Mol. Biol. Rev. 1998, 62 (4): 1301-1314.
18. Faruque S.M., Biswas K., Udden S.M. etal. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Nat. Acad. Sci. USA. 2006, 103 (16): 6350-6355.
19. Franklin A., Soderlind O., Mollby R. Plasmids coding for enterotoxins, K88 antigen and colicins in porcine Escherichia coli strains of O-group 149. Med. Microbiol. Immunol. 1981,170:63-72.
20. Giglio K.M., Fong J.C., Yildiz F.H., Sondermann H. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 2013, 195 (14): 3277-3286.
21. Gillor O., Kirkur B.C., Riley M.A. Colicins and microcins: the next generation antimimicro-bials. Adv. Appl. Microbiol. 2004, 54: 129-146.
22. Gopalakrishnan S., Durai M., Kitchens K. et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides. 2012, 35 (1): 86-94.
23. Hartley D.M., Morris J.M., Smith D.L. Hyperinfectivity: a critical element in the ability ofV. cholerae to cause epidemics? PLoS. Med. 2006, 3 (1): e7.
24. Islam M.S., Drasar B.S., Bradley D.J. Survival of toxigenic Vibrio cholerae 01 with a common duckweed, Lemna minor, in artificial aquatic ecosystems. Trans. R. Soc. Trop. Med. Hyg. 1990, 84 (3): 422-424.
25. Kaplan J.B., Ragunath C., Ramasubbu N., Fine D.H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous (5-hexosaminidase activity. J. Bacteriol. 2003, 185 (16): 4693-4698.
26. Maestre-Reyna M., Wu W.J., Wang A.H. Structural insights into RbmA, a biofilm scaffolding protein ofV. cholerae. PLoS One. 2013, 8 (12): e82458.
27. Moorthy S., Watnic P.I. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol. Microbiol. 2004, 52 (2): 573-587.
28. Mudrak B., Tamayo R. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 2012, 80 (5): 1794-1802.
29. Olivier V, Queen J., Satchell K.J.F Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One. 2009, 4 (10): e7352.
30. Parker Z.M., Pendergraft S.S., Sobieraj J. et al. Elevated levels ofthe norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations. Expert Rev. Gastroenterol. Hepatol. 2012, 6 (1): 17-23.
31. Purdy A.E., Watnick P.I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Nat. Acad. Sci. USA. 2011, 108 (49): 19737-19742.
32. Ray V.A., Morris A.R., Visick K.L. A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J. Vis. Exp. 2012, 64: pii-4035.
33. Seper A., Fengler V.H., Roier S. et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 2011, 82 (4): 1015-1037.
34. Spagnuolo M.A., Dirita V, Kirschner D. A model for Vibrio cholerae colonization of the human intestine. J. Theor. Biol. 2011, 289: 247-258.
35. Suckow G., Seitz P., Blokesch M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 2011, 193 (18): 4914-4924.
36. Tamayo R., Pratt J.T., Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Rev. Microbiol. 2007, 61: 131-148.
37. Tamayo R., PatimallaB., Camilli A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect. Immun. 2010, 78 (8): 3560-3569.
38. Valeru S.P., Wai S.N., Saeed A. et al. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res. Notes. 2012, 5 (1): 33.
39. Watnick P.I., Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999, 34: 586-595.
40. Zettler Erik R., Tracy J. Mincer, Linda A. Amaral-Zettler. Life in the «Plastisphere»: Microbial communities on plastic marine debris. Envir. Sci.Technol. 2013, 47 (13): 7137-7146.
Journal of microbiology, epidemiology and immunobiology. 2016; : 88-97
ROLE OF BIOFILMS IN SURVIVAL AND PRESERVATION OF VIRULENCE OF CHOLERA VIBRIOS IN THE ENVIRONMENT AND HUMAN ORGANISM
Titova S. V., Alekseeva L. P., Andrusenko I. T.
https://doi.org/10.36233/0372-9311-2016-3-88-97Abstract
References
1. Blinkova L.P. Perspektivy ispol'zovaniya bakteriotsinov dlya profilaktiki i terapii infektsii. Zhurn. mikrobiol. 1984, 5: 10-15.
2. Golubev B.P. Ekologicheskie aspekty rasprostraneniya vibrionov El'tor v ob\"ektakh okruzhayushchei sredy. Avtoref. dis. kand. med. nauk. Saratov, 1993.
3. Lakhtin V.M., Aleshkin V.A., Lakhtin M.V. i dr. Lektiny, adgeziny i lektinovye veshchestva laktobatsill i bifidobakterii. Vestnik RAMN. 2006, 1: 28-34.
4. Markina O.V., Shelokhovich A.I., Terent'ev A.N. i dr. Stabilizirovannye fazovye varianty Vibrio cholerae El Tor P-18895. V: Kholera i patogen, dlya cheloveka vibriony. Rostov-na-Donu, Donizdat, 2014, 27: 112-114.
5. Mishan'kin B.N., Duvanova O.V., Romanova L.V. i dr. Membrannyi belok OtrT kholernogo vibriona kak vozmozhnyi predstavitel' omptinov semeistva Vibrionaceae. Problemy osobo opasnykh infektsii. 2014, 3: 52-56.
6. Mishan'kin B.N., ShimanyukN.Ya., Vodop'yanov S.O. idr. Izuchenie khitinoliticheskogo kompleksa kholernogo vibriona serovarianta 0139. Biotekhnologiya. 2010, 1: 32-40.
7. Mishan'kin B.N., Duvanova O.V., Shipko E.S. i dr. Sistema aktivatsii plazminogena u Vibrio cholerae. Zhurn. mikrobiol. 2013, 5: 13-20.
8. Sizova Yu.V., Cherepakhina I.Ya., Balakhnova V.V. idr. Variabel'nost' svoistv, kharakterizuyushchikh sposobnost' k vyzhivaniyu kholernykh vibrionov v bioplenochnykh soobshchestvakh. Probl. osobo opasnykh inf. 2012, 3 (113): 54-57.
9. ShimanyukN.Ya., Duvanova, O.V., Suchkov I.Yu. idr. Neiraminidaza Vibrio cholerae 0139 «Bengal»: obnaruzhenie, ochistka i nekotorye svoistva. Biotekhnologiya, 1999, 3: 56-62.
10. Augustine N., Peter A.W., Kerkar S., Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr. Microbiol. 2012, 64 (4): 338-342.
11. Berk V., Fong J.C., Dempsey G.T. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science. 2012, 337 (6091): 236-239.
12. Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 2012, 14 (8): 1898-1912.
13. Boyhan S., Beyhan S., Tischler A.D. et al. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 2006, 188 (10): 3600-3613.
14. Castro-Rosas J., Escartin, E.F. Increased toleranceof Vibrio cholerae 01 to temperature, pH, or dryingassociated with colonization of shrimp carapaces. Int. J. Food Microbiol. 2005,102: 195-201.
15. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistentinfections. Science. 1999, 284: 1318-1322.
16. Emch M., Feldacker C., Yunus M. et al. Effects of global climate on infectious disease: the cholera model. Am. J. Trap. Med. Hyg. 2008, 78: 823-832.
17. Faruque S.M., Albert M.J., Mekalanos J.J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholera. Microbiol. Mol. Biol. Rev. 1998, 62 (4): 1301-1314.
18. Faruque S.M., Biswas K., Udden S.M. etal. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Nat. Acad. Sci. USA. 2006, 103 (16): 6350-6355.
19. Franklin A., Soderlind O., Mollby R. Plasmids coding for enterotoxins, K88 antigen and colicins in porcine Escherichia coli strains of O-group 149. Med. Microbiol. Immunol. 1981,170:63-72.
20. Giglio K.M., Fong J.C., Yildiz F.H., Sondermann H. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 2013, 195 (14): 3277-3286.
21. Gillor O., Kirkur B.C., Riley M.A. Colicins and microcins: the next generation antimimicro-bials. Adv. Appl. Microbiol. 2004, 54: 129-146.
22. Gopalakrishnan S., Durai M., Kitchens K. et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides. 2012, 35 (1): 86-94.
23. Hartley D.M., Morris J.M., Smith D.L. Hyperinfectivity: a critical element in the ability ofV. cholerae to cause epidemics? PLoS. Med. 2006, 3 (1): e7.
24. Islam M.S., Drasar B.S., Bradley D.J. Survival of toxigenic Vibrio cholerae 01 with a common duckweed, Lemna minor, in artificial aquatic ecosystems. Trans. R. Soc. Trop. Med. Hyg. 1990, 84 (3): 422-424.
25. Kaplan J.B., Ragunath C., Ramasubbu N., Fine D.H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous (5-hexosaminidase activity. J. Bacteriol. 2003, 185 (16): 4693-4698.
26. Maestre-Reyna M., Wu W.J., Wang A.H. Structural insights into RbmA, a biofilm scaffolding protein ofV. cholerae. PLoS One. 2013, 8 (12): e82458.
27. Moorthy S., Watnic P.I. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol. Microbiol. 2004, 52 (2): 573-587.
28. Mudrak B., Tamayo R. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 2012, 80 (5): 1794-1802.
29. Olivier V, Queen J., Satchell K.J.F Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One. 2009, 4 (10): e7352.
30. Parker Z.M., Pendergraft S.S., Sobieraj J. et al. Elevated levels ofthe norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations. Expert Rev. Gastroenterol. Hepatol. 2012, 6 (1): 17-23.
31. Purdy A.E., Watnick P.I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Nat. Acad. Sci. USA. 2011, 108 (49): 19737-19742.
32. Ray V.A., Morris A.R., Visick K.L. A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J. Vis. Exp. 2012, 64: pii-4035.
33. Seper A., Fengler V.H., Roier S. et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 2011, 82 (4): 1015-1037.
34. Spagnuolo M.A., Dirita V, Kirschner D. A model for Vibrio cholerae colonization of the human intestine. J. Theor. Biol. 2011, 289: 247-258.
35. Suckow G., Seitz P., Blokesch M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 2011, 193 (18): 4914-4924.
36. Tamayo R., Pratt J.T., Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Rev. Microbiol. 2007, 61: 131-148.
37. Tamayo R., PatimallaB., Camilli A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect. Immun. 2010, 78 (8): 3560-3569.
38. Valeru S.P., Wai S.N., Saeed A. et al. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res. Notes. 2012, 5 (1): 33.
39. Watnick P.I., Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999, 34: 586-595.
40. Zettler Erik R., Tracy J. Mincer, Linda A. Amaral-Zettler. Life in the «Plastisphere»: Microbial communities on plastic marine debris. Envir. Sci.Technol. 2013, 47 (13): 7137-7146.
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32