Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; : 61-72
Механизмы внутриклеточного паразитизма бактерий
Бойченко М. Н., Кравцова Е. О., Зверев В. В.
https://doi.org/10.36233/0372-9311-2019-5-61-72Аннотация
Список литературы
1. Бойченко М.Н., Кравцова Е.О., Волчкова Е.В. и др. Некоторые молекулярные механизмы паразитирования бактерий внутри цитоплазмы клетки хозяина. Инфекционные болезни. 2018, 16(2): 92-97.
2. Бойченко М.Н., Кравцова Е.О., Волчкова Е.В., Белая О.Ф. Некоторые вопросы молекулярного патогенеза внутриклеточного паразитизма бактерий. Инфекционные болезни. 2017, 15(4):71-75.
3. Bastidas R.J., Elwell C., Engel J., Valdivia R.H. Chlamydial intracellular survival strategies.Cold Spring Harb.Perspec. Med. 2013, 3: a010256.
4. Bernardini M.L., Mounier J., dHauteville H. et al. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin.Proc.Natl. Acad.Sci.USA. 1989, 86:3867-3871.
5. Bierene H., Milohanic E., Kortebi M. To be citosolic or vacuolar.The duble life of Listeria monocytogenes. Front Cell Infection Microbiol. 2018, 9:136. doi: 10.3389|fcimb 2018.00136.
6. Сampbell-Valois F.X., Sachse M.,Sansonetti P.J., Parsot C. Escape of actively secreting Shigella flexneri from ATG8/LC3- positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio. 2015, 6: e02567-e2514.10.1128/mBio.02567-14.
7. Campellone K.G., Welch M.D. A molecular arms race: cellular control of action assembly. Nat. Rev. Mol. Cell Biol. 2010, 11: 237-251. doi:10.1038/nrm2867.
8. Castaneda-Roldan E.I., Avelino-Flores F., DallAgnolM. et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol. 2004, 6:435-445.
9. Celli J., de Chastellier C., Franchini D.-M. et al. Brucella evades macrophages killing via VirBdependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 2003, 198: 545-556.
10. Dai V., Li Z. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Int. J. Clin. Exp. Pathol. 2014, 7(9): 5404-5414.
11. De Barsy M., Jamet A., Filopon D. et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 2011, 13:1044-1058.
12. Delevoye C., Nilges M., Dehoux P. et al. SNARE protein mimicry by an intracellular bacterium. PLoSPatog. 2008, 4: e1000022.10.1371/journal.ppat.1000022.
13. Derivery E., Gautreau A. Generation of brunched action networks: assembly and regulation of the NWASP and WAVE molecular machines. BioEssays 2010, 32:119-131. doi:10.1002/bies.200900123.
14. Dohmer P.H., Valguanera E., Czibener C., Ugalde J.E. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 2014, 16:396-410. doi:10.3389/fcimb.2006.00079.
15. Dumoux M., Clare D.K., Sabibil H.R., Hayward R.D. Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic.2012, 13: 1612-1627.
16. Egile C., Loisel T.P., Laurent V. et al. Activation of the CDC42 effector N-WASP by Shigella flexneriIcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J.Cell.Biol. 1999, 146:1319-1332.
17. Elwell C., Mirrashidi K., Engel J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 2016 Jun; 14(6): 385-400. doi:10.1038/micro.2016.30.
18. Figueiredo P., Ficht Th. et al. Pathogenesis and Immunobiology of Brucellosis. Am. J. Pathol. 2015, 185(6);1505-1517.
19. Goldberg M.B., Barzu O., Parsot C., Sansonetti P.J. Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J.Bacteriol. 1993, 175:2189-2196.
20. Gouin E., Egile C., Dehoux P. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004, 427: 29. doi:10.1038/nature02318.
21. Haglund C.M., Choe J.E., Skau C.T. et al. Rickettsia Sca2 is a bacterial formin-like mediator of actinbased motility. Nat. Cell Biol. 2010, 12:10578-1063. doi: 10.1038/ncb2109.
22. Herve Agaisse. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front. Cell Infect. Microbiol. 2016, 6:29.
23. Huang Z., Chen M., Li K. et al. Cryo-electron tomography of Chlamydia trachomatis gives a clue to the mechanism of outer membrane changes. J. Electron. Microsc. (Tokyo). 2010, 59: 237-241.
24. Ireton K. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol. 2013 Jul; 3(7) 130079. doi: 10.1098/rsob.130079.
25. Jiwani S., Ohr R.J., Fischer E.R. et al. Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization. Biochem.Biophys. Res. Commun. 2012, 420: 816-821.
26. Kleba B., Clark T.R., Lutter E.I. et al. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 2010, 78:2240-2247. doi:10.1128/IAI.00100-10.
27. Kohler S., Foulongne V., Ouahrani-Bettache S. et al. The analysis of the intramacrophagicvirulome of Brucellasuis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci. USA. 2002, 99:15711-15716.
28. Kortebi M., Milohanec E., Mitchell G. et al. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cell Plos.Pathog. 2017, nov 30; 13(11)e 1006734. doi: 10.1371/journalppat1006734.
29. Lamason R.L., Welch M.D. Actin-based motility and cell-to-cell spread of bacterial pathogens.Curr. Opin. Microbiol. 2017 Feb; 35: 48-57. doi:10.1016/j.mib.2016.11.007.
30. Lambrechts A., Gevaert K., Cossart P. et al. Listeria commet tails: the actin-based motility machinery at work. Trends Cell Biol, 2008,18: 220-227.
31. Mattock E., Biocker A.J. How do the virulence factors of Shigella work together to cause disease? Front. Cell Infect. Microbiol. 2017,7:64.
32. Nans A., Ford C., Hayward R.D. Host-pathogen reorganization during host cell entry by Chlamydia trachomatis. Microbes Infect. 2015. Nov-Dec 17 (11-12): 727-731. doi:10.1016/Jmicr.2015.08.004.
33. Nickel W., Weber T., McNew J.A. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA. 1999, 96:12571-12576.10.1073/pnas.96.22.12571.
34. Ogawa M.T., Yoshimori T., Suzuki T. еt al. Escape of intracellular Shigella from autophagy. Science. 2005, Feb4, 307(5710):727-731. doi:10.1126/science/1106036.
35. Rana R.R., Zhang M., Spear A.M. et al. Bacterial TIR-containing proteins and host innate immune system evasion. Med. Microbiol. Immunol. 2013, 202:1-10.
36. Reed S.C.O., Lamason R.I., Risca V.I. et al. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 2014, 24: 98-103.
37. Roehrich-Doenitz A.D. Regulation of Type III Secretion Hierachy in Shigella flexneri.Ph.D.thesis. University of Bristol, 2013.
38. Roehrich-Doenitz A.D., Guillossou E., Blocker A.J., Martinez-Argudo I. Shigella IpaD has a dual role: signal transduction from type III secretion system needle tip and intracellular secretion regulation. Mol. Microbiol. 2013, 87:690-706.10.1111/mmi.12124.
39. Rolan H.G. Tsolis R.M. Inactivation of the Tipe IV system reduces the Th1 polyrasation of immune responses to Brucellaabortus infection. Infect. Immunol. 2008, Jul, 76(7):3207-3213. doi:10.1128/IAI.00203-08.
40. Rossetti C.A., Drake K.L., Adams L.G. Transcriptome analysis of HeLa cells response to Brucella melitensis infection:a molecular approach to understand the role of the mucosal epithelium in the onset of the Brucella pathogenesis. Microbes Infect. 2012, 14:756-767.
41. Salcedo S.P., Marchesini M.I., Degos C. et al. Recent molecular insights into rickettsial pathogenesis and immunity.Future Microbiol. 2013, Oct. 8(10):1265-1288. doi:10.2217/fmb.13.102.
42. Saka H.A. et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol. Microbiol. 2011, 82: 1185-1203.
43. Lepidi H. et al. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 2013, 3:28.
44. Schroeder G.N., Hilbi H. Molecular pathogenesis of Shigella spp.:controlling host cell signaling, invasion, and death by Type III Secretion. Clin. Microbiol. Rev. 2008, Jan; 21(1):134-156.
45. Snyder G.A., Deredge D., Waldhuber A. et al. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry. J. Biol. Chem. 2014, 289:669-679.
46. Wang J., Zhang Y., Yu P., Zhong G. Immunodominant regions of Chlamydia trachomatis Type III secretion effector proteins, Tarp. Clin. Vaccine Immunol. 2010, 17: 1371-1376.
47. Weber M., Faris R. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front. Cell. Dev. Biol. 2018, 6:1. doi. 10.3389/fcell.2018.00001.
48. West N.P., Sansonetti P., Mounier J. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 2005, 307,1313-1318.10.1126/science.1108472.
Journal of microbiology, epidemiology and immunobiology. 2019; : 61-72
Mechanism of intracellular bacterial parasitism
Boichenko M. N., Kravtsova E. O., Zverev V. V.
https://doi.org/10.36233/0372-9311-2019-5-61-72Abstract
References
1. Boichenko M.N., Kravtsova E.O., Volchkova E.V. i dr. Nekotorye molekulyarnye mekhanizmy parazitirovaniya bakterii vnutri tsitoplazmy kletki khozyaina. Infektsionnye bolezni. 2018, 16(2): 92-97.
2. Boichenko M.N., Kravtsova E.O., Volchkova E.V., Belaya O.F. Nekotorye voprosy molekulyarnogo patogeneza vnutrikletochnogo parazitizma bakterii. Infektsionnye bolezni. 2017, 15(4):71-75.
3. Bastidas R.J., Elwell C., Engel J., Valdivia R.H. Chlamydial intracellular survival strategies.Cold Spring Harb.Perspec. Med. 2013, 3: a010256.
4. Bernardini M.L., Mounier J., dHauteville H. et al. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin.Proc.Natl. Acad.Sci.USA. 1989, 86:3867-3871.
5. Bierene H., Milohanic E., Kortebi M. To be citosolic or vacuolar.The duble life of Listeria monocytogenes. Front Cell Infection Microbiol. 2018, 9:136. doi: 10.3389|fcimb 2018.00136.
6. Sampbell-Valois F.X., Sachse M.,Sansonetti P.J., Parsot C. Escape of actively secreting Shigella flexneri from ATG8/LC3- positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio. 2015, 6: e02567-e2514.10.1128/mBio.02567-14.
7. Campellone K.G., Welch M.D. A molecular arms race: cellular control of action assembly. Nat. Rev. Mol. Cell Biol. 2010, 11: 237-251. doi:10.1038/nrm2867.
8. Castaneda-Roldan E.I., Avelino-Flores F., DallAgnolM. et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol. 2004, 6:435-445.
9. Celli J., de Chastellier C., Franchini D.-M. et al. Brucella evades macrophages killing via VirBdependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 2003, 198: 545-556.
10. Dai V., Li Z. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Int. J. Clin. Exp. Pathol. 2014, 7(9): 5404-5414.
11. De Barsy M., Jamet A., Filopon D. et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 2011, 13:1044-1058.
12. Delevoye C., Nilges M., Dehoux P. et al. SNARE protein mimicry by an intracellular bacterium. PLoSPatog. 2008, 4: e1000022.10.1371/journal.ppat.1000022.
13. Derivery E., Gautreau A. Generation of brunched action networks: assembly and regulation of the NWASP and WAVE molecular machines. BioEssays 2010, 32:119-131. doi:10.1002/bies.200900123.
14. Dohmer P.H., Valguanera E., Czibener C., Ugalde J.E. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 2014, 16:396-410. doi:10.3389/fcimb.2006.00079.
15. Dumoux M., Clare D.K., Sabibil H.R., Hayward R.D. Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic.2012, 13: 1612-1627.
16. Egile C., Loisel T.P., Laurent V. et al. Activation of the CDC42 effector N-WASP by Shigella flexneriIcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J.Cell.Biol. 1999, 146:1319-1332.
17. Elwell C., Mirrashidi K., Engel J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 2016 Jun; 14(6): 385-400. doi:10.1038/micro.2016.30.
18. Figueiredo P., Ficht Th. et al. Pathogenesis and Immunobiology of Brucellosis. Am. J. Pathol. 2015, 185(6);1505-1517.
19. Goldberg M.B., Barzu O., Parsot C., Sansonetti P.J. Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J.Bacteriol. 1993, 175:2189-2196.
20. Gouin E., Egile C., Dehoux P. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004, 427: 29. doi:10.1038/nature02318.
21. Haglund C.M., Choe J.E., Skau C.T. et al. Rickettsia Sca2 is a bacterial formin-like mediator of actinbased motility. Nat. Cell Biol. 2010, 12:10578-1063. doi: 10.1038/ncb2109.
22. Herve Agaisse. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front. Cell Infect. Microbiol. 2016, 6:29.
23. Huang Z., Chen M., Li K. et al. Cryo-electron tomography of Chlamydia trachomatis gives a clue to the mechanism of outer membrane changes. J. Electron. Microsc. (Tokyo). 2010, 59: 237-241.
24. Ireton K. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol. 2013 Jul; 3(7) 130079. doi: 10.1098/rsob.130079.
25. Jiwani S., Ohr R.J., Fischer E.R. et al. Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization. Biochem.Biophys. Res. Commun. 2012, 420: 816-821.
26. Kleba B., Clark T.R., Lutter E.I. et al. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 2010, 78:2240-2247. doi:10.1128/IAI.00100-10.
27. Kohler S., Foulongne V., Ouahrani-Bettache S. et al. The analysis of the intramacrophagicvirulome of Brucellasuis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci. USA. 2002, 99:15711-15716.
28. Kortebi M., Milohanec E., Mitchell G. et al. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cell Plos.Pathog. 2017, nov 30; 13(11)e 1006734. doi: 10.1371/journalppat1006734.
29. Lamason R.L., Welch M.D. Actin-based motility and cell-to-cell spread of bacterial pathogens.Curr. Opin. Microbiol. 2017 Feb; 35: 48-57. doi:10.1016/j.mib.2016.11.007.
30. Lambrechts A., Gevaert K., Cossart P. et al. Listeria commet tails: the actin-based motility machinery at work. Trends Cell Biol, 2008,18: 220-227.
31. Mattock E., Biocker A.J. How do the virulence factors of Shigella work together to cause disease? Front. Cell Infect. Microbiol. 2017,7:64.
32. Nans A., Ford C., Hayward R.D. Host-pathogen reorganization during host cell entry by Chlamydia trachomatis. Microbes Infect. 2015. Nov-Dec 17 (11-12): 727-731. doi:10.1016/Jmicr.2015.08.004.
33. Nickel W., Weber T., McNew J.A. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA. 1999, 96:12571-12576.10.1073/pnas.96.22.12571.
34. Ogawa M.T., Yoshimori T., Suzuki T. et al. Escape of intracellular Shigella from autophagy. Science. 2005, Feb4, 307(5710):727-731. doi:10.1126/science/1106036.
35. Rana R.R., Zhang M., Spear A.M. et al. Bacterial TIR-containing proteins and host innate immune system evasion. Med. Microbiol. Immunol. 2013, 202:1-10.
36. Reed S.C.O., Lamason R.I., Risca V.I. et al. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 2014, 24: 98-103.
37. Roehrich-Doenitz A.D. Regulation of Type III Secretion Hierachy in Shigella flexneri.Ph.D.thesis. University of Bristol, 2013.
38. Roehrich-Doenitz A.D., Guillossou E., Blocker A.J., Martinez-Argudo I. Shigella IpaD has a dual role: signal transduction from type III secretion system needle tip and intracellular secretion regulation. Mol. Microbiol. 2013, 87:690-706.10.1111/mmi.12124.
39. Rolan H.G. Tsolis R.M. Inactivation of the Tipe IV system reduces the Th1 polyrasation of immune responses to Brucellaabortus infection. Infect. Immunol. 2008, Jul, 76(7):3207-3213. doi:10.1128/IAI.00203-08.
40. Rossetti C.A., Drake K.L., Adams L.G. Transcriptome analysis of HeLa cells response to Brucella melitensis infection:a molecular approach to understand the role of the mucosal epithelium in the onset of the Brucella pathogenesis. Microbes Infect. 2012, 14:756-767.
41. Salcedo S.P., Marchesini M.I., Degos C. et al. Recent molecular insights into rickettsial pathogenesis and immunity.Future Microbiol. 2013, Oct. 8(10):1265-1288. doi:10.2217/fmb.13.102.
42. Saka H.A. et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol. Microbiol. 2011, 82: 1185-1203.
43. Lepidi H. et al. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 2013, 3:28.
44. Schroeder G.N., Hilbi H. Molecular pathogenesis of Shigella spp.:controlling host cell signaling, invasion, and death by Type III Secretion. Clin. Microbiol. Rev. 2008, Jan; 21(1):134-156.
45. Snyder G.A., Deredge D., Waldhuber A. et al. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry. J. Biol. Chem. 2014, 289:669-679.
46. Wang J., Zhang Y., Yu P., Zhong G. Immunodominant regions of Chlamydia trachomatis Type III secretion effector proteins, Tarp. Clin. Vaccine Immunol. 2010, 17: 1371-1376.
47. Weber M., Faris R. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front. Cell. Dev. Biol. 2018, 6:1. doi. 10.3389/fcell.2018.00001.
48. West N.P., Sansonetti P., Mounier J. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 2005, 307,1313-1318.10.1126/science.1108472.
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32