Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; : 16-23
Ингибирование гемолитической активности Strepto coccus pyogenes в механизмах антибактериального действия катионов цинка
Чекнёв С. Б., Вострова Е. И., Сарычева М. А., Востров А. В.
https://doi.org/10.36233/0372-9311-2019-5-16-23Аннотация
Цель. Оценка гемолитической активности в культуре S.pyogenes, претерпевающей торможение роста вследствие воздействия миллимолярных концентраций катионов цинка.
Материалы и методы. Суспензию бактерий S.pyogenes, содержавшую 108 КОЕ/мл, засевали газоном на чашки Петри с кровяным питательным агаром. Спустя 30 мин на поверхность газона с помощью 36-канального штампа-репликатора каплями объемом по 5 мкл наносили водные растворы солей цинка и меди с концентрацией по катионам металлов от 5 х 10-3 М до 5 х 10-1 М. Затем чашки с культурой бактерий инкубировали в течение суток при 37°С, после чего определяли диаметр зоны задержки роста и зоны ингибирования гемолиза. Для оценки наличия (отсутствия) в зонах задержки роста жизнеспособных бактерий, а также глубины повреждения клеток на периферии зоны задержки роста опыты сопровождали необходимыми контрольными высевами материала с последующим термостатированием.
Результаты. В диапазоне концентраций катионов цинка от 50 до 500 мМ на газоне культуры S.pyogenes образуется зона задержки роста бактерий, концентрически окруженная зоной ингибирования гемолиза, в пределах которой торможение роста бактерий визуально не регистрируется. Катионы меди не формируют зону ингибирования гемолиза, выходящую за границу зоны задержки роста бактерий.
Заключение. Ингибирующее действие катионов цинка на гемолитическую активность в культуре S.pyogenes реализуется специфически, оказывается обратимым и трактуется в контексте проявления антивирулентных свойств катионов металла.
Список литературы
1. Чекнёв С.Б., Вострова Е.И., Сарычева М.А., Кисиль С.В., Анисимов В.В., Востров А.В. Торможение роста бактерий в культурах Streptococcus pyogenes и Streptococcus agalactiae в присутствии катионов меди и цинка. Журн. микробиол. 2017, 3:26-35.
2. Чекнёв С.Б., Вострова Е.И., Кисиль С.В., Сарычева М.А., Востров А.В. Механизмы бактерицидного действия в реализации общих антибактериальных эффектов катионов металлов в культуре Streptococcus pyogenes. Журн. микробиол. 2018, 2:3-9.
3. Avigad L.S., Bernheimer A.W. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents. Infect. Immunity. 1976, 13(5):1378-1381.
4. Avigad L.S., Bernheimer A.W. Inhibition of hemolysis by zinc and its reversal by L-histidine. Infect. Immunity. 1978, 19(3):1101-1103.
5. Bayle L., Chimalapati S., Schoehn G. et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence . Molec. Microbiol. 2011, 82(4):904-916.
6. Chandrangsu P., Rensing C., Helmann J.D. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiol. 2017, 15:338-350.
7. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc on enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75(12):5974-5984.
8. Crane J.K., Byrd I.W., Boedeker E.C. Virulence inhibition by zinc of Shiga-toxigenic Escherichia coli. Infect. Immunity. 2011, 79(4):1696-1705.
9. Dupont D.P., Duhamel G.E., Carlson M.P., Mathiesen M.R. Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Vet. Microbiol. 1994, 41:63-73.
10. Joseph E.A. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmac. Ther. 1980, 11:661-717.
11. Krishnan K.C., Mukundan S., Figueroac J.A.L. et al. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications. Infect. Immunity. 2014, 82(7):2992-3001.
12. Lee J.-H., Kim Y.-G. et al. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Research. 2014, 169:888-896.
13. Miyake M., Honda T., Miwatani T. Effects of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes. Infect. Immunity. 1989, 57(1):158-163.
14. Ong C.-I.Y., Walker M.J., McEwan A.G. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Scientific Reports. 2015, 5:10.
15. Rajagopal L. Understanding the regulation of group B streptococcal virulence factors. Future Microbiol. 2009, 4(2):201-221.
16. Ratner A.J. S.aureus toxins join the DARC side. Cell Host and Microbe. 2015, 18:272-274.
17. Russell T.M., Tang X., Goldstein J.M. et al. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA. Molecular Microbiol. 2016, 99(3):586-596.
18. Spaan A.N., Reyes-RoblesT., Badiou C. et al. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host and Microbe. 2015, 18:363-370.
19. Takeda Y., Ogiso Y., Miwatani T. Effect of zinc ion on the hemolytic activity of thermostable direct hemolysin from Vibrio parahaemolyticus, streptolysin O, and triton X-100. Infect. Immunity. 1977, 17(2):239-243.
20. Whidbey C., Vornhagen J. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury. EMBO Mol. Med. 2015, 7:488-505.
Journal of microbiology, epidemiology and immunobiology. 2019; : 16-23
Inhibition of hemolytic activity of Streptococcus pyogenes in mechanisms of antibacterial action of zinc ions
Cheknev S. B., Vostrova E. I., Sarycheva M. A., Vostrov A. V.
https://doi.org/10.36233/0372-9311-2019-5-16-23Abstract
Aim. The work was performed with the purpose to study a hemolytic activity in the culture of S.pyogenes under the inhibitory action of millimolar concentrations of zinc ions.
Materials and methods. Suspensions of S.pyogenes bacteria which contained 108 CFU/ml were sown by the lawns into the standard Petri dishes coated with the supplemented Blood Nutrient Agar. 30 min later the salt solutions of zinc or copper which contained the metals at the concentrations ranged between 5 x 10-3 M to 5 x 10-1 M were added by the 5 μl drops on the surfaces of the lawns with use of 36-channel stamp replicator. Then the dishes with bacterial cultures were incubated for 24 hrs at 37°C followed by measuring diameter of the area of culture growth inhibition and of the area of inhibition of hemolysis. The study was performed with use of controls towards measuring the state of bacterial cells obtained from different zones of the areas.
Results. In presence of the zinc ions concentrations ranged between 50 to 500 mM the area of the growth inhibition of S.pyogenes was surrounded on the lawn of the bacterial culture by the area of the inhibition of hemolysis where the growth inhibition of S.pyogenes was not registered. Copper ions did not form such an area of the hemolysis inhibition.
Conclusion. Inhibitory action of zinc ions on the hemolytic S.pyogenes activity in the culture seems to be specific and reversible, and is discussed in a context of the antivirulent zinc ions properties.
References
1. Cheknev S.B., Vostrova E.I., Sarycheva M.A., Kisil' S.V., Anisimov V.V., Vostrov A.V. Tormozhenie rosta bakterii v kul'turakh Streptococcus pyogenes i Streptococcus agalactiae v prisutstvii kationov medi i tsinka. Zhurn. mikrobiol. 2017, 3:26-35.
2. Cheknev S.B., Vostrova E.I., Kisil' S.V., Sarycheva M.A., Vostrov A.V. Mekhanizmy bakteritsidnogo deistviya v realizatsii obshchikh antibakterial'nykh effektov kationov metallov v kul'ture Streptococcus pyogenes. Zhurn. mikrobiol. 2018, 2:3-9.
3. Avigad L.S., Bernheimer A.W. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents. Infect. Immunity. 1976, 13(5):1378-1381.
4. Avigad L.S., Bernheimer A.W. Inhibition of hemolysis by zinc and its reversal by L-histidine. Infect. Immunity. 1978, 19(3):1101-1103.
5. Bayle L., Chimalapati S., Schoehn G. et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence . Molec. Microbiol. 2011, 82(4):904-916.
6. Chandrangsu P., Rensing C., Helmann J.D. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiol. 2017, 15:338-350.
7. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc on enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75(12):5974-5984.
8. Crane J.K., Byrd I.W., Boedeker E.C. Virulence inhibition by zinc of Shiga-toxigenic Escherichia coli. Infect. Immunity. 2011, 79(4):1696-1705.
9. Dupont D.P., Duhamel G.E., Carlson M.P., Mathiesen M.R. Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Vet. Microbiol. 1994, 41:63-73.
10. Joseph E.A. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmac. Ther. 1980, 11:661-717.
11. Krishnan K.C., Mukundan S., Figueroac J.A.L. et al. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications. Infect. Immunity. 2014, 82(7):2992-3001.
12. Lee J.-H., Kim Y.-G. et al. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Research. 2014, 169:888-896.
13. Miyake M., Honda T., Miwatani T. Effects of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes. Infect. Immunity. 1989, 57(1):158-163.
14. Ong C.-I.Y., Walker M.J., McEwan A.G. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Scientific Reports. 2015, 5:10.
15. Rajagopal L. Understanding the regulation of group B streptococcal virulence factors. Future Microbiol. 2009, 4(2):201-221.
16. Ratner A.J. S.aureus toxins join the DARC side. Cell Host and Microbe. 2015, 18:272-274.
17. Russell T.M., Tang X., Goldstein J.M. et al. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA. Molecular Microbiol. 2016, 99(3):586-596.
18. Spaan A.N., Reyes-RoblesT., Badiou C. et al. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host and Microbe. 2015, 18:363-370.
19. Takeda Y., Ogiso Y., Miwatani T. Effect of zinc ion on the hemolytic activity of thermostable direct hemolysin from Vibrio parahaemolyticus, streptolysin O, and triton X-100. Infect. Immunity. 1977, 17(2):239-243.
20. Whidbey C., Vornhagen J. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury. EMBO Mol. Med. 2015, 7:488-505.
События
-
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17 -
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52