Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 66-72

ВЫЯВЛЕНИЕ ОСОБЕННОСТЕЙ МАСС-СПЕКТРОВ БЕЛКОВЫХ ЭКСТРАКТОВ СПОРОВОЙ И ВЕГЕТАТИВНОЙ ФОРМ ВОЗБУДИТЕЛЯ СИБИРСКОЙ ЯЗВЫ МЕТОДОМ ВРЕМЯПРОЛЕТНОЙ МАСС-СПЕКТРОМЕТРИИ

Ульшина Д. В., Еременко Е. И., Ковалев Д. А., Рязанова А. Г., Кузнецова И. В., Аксенова Л. Ю., Семенова О. В., Бобрышева О. В., Сирица Ю. В., Куличенко А. Н.

https://doi.org/10.36233/0372-9311-2018-6-66-72

Аннотация

Цель. Исследование особенностей белковых профилей споровой и вегетативной форм сибиреязвенного микроба методом MALDI-TOF MS с использованием ресурсов программы Mass-Up и комплекса пакетов для статистического программного обеспечения с открытым исходным кодом R. Материалы и методы. Cпоровая и вегетативная формы 32 штаммов B. anthracis из коллекции микроорганизмов Ставропольского противочумного института, в том числе 8 штаммов, выделенных при вспышке сибирской язвы на Ямале в 2016 году. Белковое профилирование проводили на MALDI-TOF масс-спектрометре Microflex «Bruker Daltonics». Результаты. Используемый альтернативный биоинформационно-статистический подход для анализа MALDI-TOF масс-спектров возбудителя сибирской язвы позволил дифференцировать споровую и вегетативную формы микроба на основании выявления соответствующих групп биомаркеров. Заключение. Проведено сравнение вегетативных и споровых клеток типичных и атипичных штаммов возбудителя сибирской язвы на основании данных MALDI-TOF MS. Экспериментально подтверждено, что белковые профили экстрактов культур сибиреязвенного микроба споровой и вегетативной форм существенно отличаются и это различие можно использовать для поиска потенциальных маркеров каждой из форм.
Список литературы

1. Еременко Е.И., Рязанова А.Г., Цыганкова Е.А., Цыганкова О.И., Куличенко А.Н. Генотипические особенности штаммов Bacillus anthracis c разным проявлением признаков, ассоциированных с патогенностью. Проблемы особо опасных инфекций. 2010, 104:53-56.

2. Castanha E.R., Fox A., Fox K.F. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J. Microbiol. Methods. 2006, 67(2):230-240.

3. Dybwad M., van der Laaken A.L., Blatny J.M. et al. Rapid Identi cation of Bacillus anthracis Spores in Suspicious Powder Samples by Using Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry (MALDI-TOF MS). Applied and Environmental Microbiology. 2013, 79(17): 5372-5383.

4. Elhanany E., Barak R., Fisher M. et al. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 2001, 15(22):2210-2216.

5. Gibb S., Strimmer K. Mass spectrometry analysis using MALDIquant. Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Springer. Cham. 2017:101-124.

6. Jeong Y.S., Lee J., Kim S.J. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry. Bull. Korean Chem. Soc. 2013, 34(9):2635-2639.

7. Jernigan D.B., Raghunathan P.L., Bell B.P. et al. Investigation of Bioterrorism-Related Anthrax, United States, 2001: Epidemiologic Finding, Emerging Infectious Diseases. 2002, 8(10):1019-1028.

8. Lasch P., Beyer W., Nattermann H. et al. Identification of Bacillus anthracis by Using Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry and Artificial Neural Networks. Applied and Environmental Microbiology. 2009: 7229-7242.

9. Meselson M., Guillemin J., Hugh-Jones M. et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994, 266(5188):1202-1208.

10. Pauker V.I., Thoma B.R., Grass G. et al.Improved discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus sensulato Group based on MALDI-TOF Mass Spectrometry. J. Clin. Microbiol. 2018, doi: 10.1128/JCM.01900-17.

11. Theel E. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Identification of Bacterial and Yeast Isolates. Communique Mayo Medical Laboratories. January 2013.

Journal of microbiology, epidemiology and immunobiology. 2018; : 66-72

STUDY OF THE MASS-SPECTORS’ FEATURES OF SPORES AND VEGETATIVE FORMS OF BACILLUS ANTHRACIS BY THE METHOD OF TIME OF FLIGHT MASS-SPECTROMETRY

Ulshina D. V., Eremenko E. I., Kovalev D. A., Ryazanova A. G., Kuznetsova I. V., Aksenova L. Yu., Semenova O. V., Bobrysheva O. V., Siritsa Yu. V., Kulichenko A. N.

https://doi.org/10.36233/0372-9311-2018-6-66-72

Abstract

Aim. Investigation of the features of the protein profiles of the spore and vegetative form of the anthrax microbe by the MALDI-TOF MS method using the resources of the Mass-Up program and the package for the statistical software with open source code R. Materials and methods. Spores and vegetative forms of 32 strains of B. anthracis from the collection of microorganisms of the Stavropol Research Institute for Plague Control, including 8 strains isolated from an outbreak of anthrax in Yamal in 2016. Protein profiling was carried out on the Microflex MALDI-TOF mass spectrometer «Bruker Daltonics». Results. The alternative bioinformational-statistical approach used to analyze the MALDI-TOF mass spectra of the causative agent of anthrax made it possible to differentiate the spores and vegetative forms of the microbe based on the identification of the corresponding groups of biomarkers. Conclusion. A comparison of vegetative and spore cells of typical and atypical strains of anthrax causative agent on the basis of MALDI-TOF MS data was made. It has been experimentally confirmed that the protein profiles of cultures of Bacillus anthracis of the spore and vegetative form differ significantly, and this difference can be used to search for potential markers of each of the forms.
References

1. Eremenko E.I., Ryazanova A.G., Tsygankova E.A., Tsygankova O.I., Kulichenko A.N. Genotipicheskie osobennosti shtammov Bacillus anthracis c raznym proyavleniem priznakov, assotsiirovannykh s patogennost'yu. Problemy osobo opasnykh infektsii. 2010, 104:53-56.

2. Castanha E.R., Fox A., Fox K.F. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J. Microbiol. Methods. 2006, 67(2):230-240.

3. Dybwad M., van der Laaken A.L., Blatny J.M. et al. Rapid Identi cation of Bacillus anthracis Spores in Suspicious Powder Samples by Using Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry (MALDI-TOF MS). Applied and Environmental Microbiology. 2013, 79(17): 5372-5383.

4. Elhanany E., Barak R., Fisher M. et al. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 2001, 15(22):2210-2216.

5. Gibb S., Strimmer K. Mass spectrometry analysis using MALDIquant. Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Springer. Cham. 2017:101-124.

6. Jeong Y.S., Lee J., Kim S.J. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry. Bull. Korean Chem. Soc. 2013, 34(9):2635-2639.

7. Jernigan D.B., Raghunathan P.L., Bell B.P. et al. Investigation of Bioterrorism-Related Anthrax, United States, 2001: Epidemiologic Finding, Emerging Infectious Diseases. 2002, 8(10):1019-1028.

8. Lasch P., Beyer W., Nattermann H. et al. Identification of Bacillus anthracis by Using Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry and Artificial Neural Networks. Applied and Environmental Microbiology. 2009: 7229-7242.

9. Meselson M., Guillemin J., Hugh-Jones M. et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994, 266(5188):1202-1208.

10. Pauker V.I., Thoma B.R., Grass G. et al.Improved discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus sensulato Group based on MALDI-TOF Mass Spectrometry. J. Clin. Microbiol. 2018, doi: 10.1128/JCM.01900-17.

11. Theel E. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Identification of Bacterial and Yeast Isolates. Communique Mayo Medical Laboratories. January 2013.