Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 9-18
ТОРМОЖЕНИЕ РОСТА БАКТЕРИЙ В КУЛЬТУРАХ STAPHYLOCOCCUS AUREUS И PSEUDOMONAS AERUGINOSA КАТИОНАМИ МЕДИ И ЦИНКА, ПРИМЕНЕННЫМИ В ФИЗИОЛОГИЧЕСКИХ КОНЦЕНТРАЦИЯХ
Чекнёв С. Б., Вострова Е. И., Сарычева М. А., Востров А. В.
Аннотация
Список литературы
1. Медицинская микробиология. В.И.Покровский, О.К.Поздеев (ред.). М., ГЭОТАР Медицина, 1998.
2. Тотолян А.А., Бурова Л.А. Fc-рецепторные белки Streptococcus pyogenes и патогенез постинфекционных осложнений. Журн. микробиол. 2014, 3: 78-90.
3. Чекнёв С.Б., Бабаева Е.Е., Голуб А.Е., Денисова Е.А., Воробьёва У.А. Эффекты меди и цинка при связывании с человеческим сывороточным у-глобулином. Мед. иммунология. 2006, 8 (5-6): 615-622.
4. Чекнёв С.Б., Вострова Е.И., Писковская Л.С., Востров А.В. Эффекты катионов меди и цинка, связанных белками у-глобулиновой фракции, в культуре Staphylococcus aureus. Журн. микробиол. 2014, 3: 4-9.
5. Чекнёв С.Б., Вострова Е.И., Апресова М.А., Писковская Л.С., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa в присутствии катионов меди и цинка. Журн. микробиол. 2015, 2: 9-17.
6. Ammendola S., Pasquali Р., Pistoia C. et al. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immunity. 2007, 75 (12): 5867-5876.
7. Borza D.-B., Morgan W.T. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by pH and metals. J. Biol. Chemistry. 1998,273 (10): 5493-5499.
8. Botella H., Stadthagen G., Lugo-Villarino G. et al. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol. 2012, 20(3): 106-112.
9. Conrady D.G., Brescia C.C., Horii K. et al. A zinc-dependent adhesion molecule is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA. 2008, 105 (49): 19456-19461.
10. Corbin B.D., Seeley E.H., Raah A. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008, 319 (15): 962-965.
11. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc in enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75 (12): 5974-5984.
12. Espirito Santo C., Lam E.W., Elowsky C.G. et al. Bacterial killing by dry metallic copper surfaces. Appl. Environm. Microbiol. 2011, 77 (3): 794-802.
13. Golub E.E., Cheruka J., Boosz B. et al. A comparison of bacterial aggregation induced by saliva, lysozyme, and zinc. Infect. Immunity. 1985, 48 (1): 204-210.
14. Gorgani N.N., Parish C.R., Altin J.G. Differential binding of histidine-rich glycoprotein (HRG) to human IgG subclasses and IgG molecules containing к and A. light chains. J. Biol. Chemistry. 1999, 274 (42): 29633-29640.
15. GrassG., RensingC., SoliozM. Metallic copperas an antimicrobial surface. Appl. Environm. Microbiol. 2011. 77 (5): 1541-1547.
16. Hodgkinson V, Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chemistry. 2012, 287 (17): 13549-13555.
17. Hood M.I., SkaarE.P. Nutritional immunity: transition metals at the pathogen-host interface. Nature Rev. Microbiol. 2012, 10: 525-537.
18. Lu Y. Metal ions as matchmakers for proteins. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1811-1812.
19. Remy L., Carriere M., Derre-Bobillot M. et al. The Staphylococcus aureus Oppl ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Molec. Microbiol. 2013, 87 (4): 730-743.
20. Rink L., Kirchner H. Zinc-altered immune function and cytokine production. J. Nutrition. 2000, 130(5, Suppl.): 1407-1411.
21. Salgado E.N., Ambroggio X.I., Brodin J.D. et al. Metal templated design of protein interfaces. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1827-1832.
22. Samanovic M.I., Ding C., Thiele D.J., Darwin K.H. Copper in microbial pathogenesis: med-ding with the metal. Cell Host Microbe. 2012, 11: 106-115.
23. Shafeeq S., Kuipers O.P., Kloosterman T.G. The role of zinc in the interplay between pathogenic streptococci and their hosts. Molec. Microbiol. 2013, 88 (6): 1047-1057.
24. Stafford S.L., Bokil N.J., Achard M.E.S. et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Reports. 2013, 33 (4): 541-554.
25. Waldron K. J., Robinson N. J. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev. Microbiol. 2009, 7: 25-35.
26. Yamamoto K., Ishihama A. Transcriptional response of Escherichia coli to external zinc. J. Bacteriol. 2005, 187 (18): 6333-6340.
Journal of microbiology, epidemiology and immunobiology. 2016; : 9-18
INHIBITION OF GROWTH OF BACTERIA IN STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA CULTURES BY COPPER AND ZINC CATIONS, APPLIED AT PHYSIOLOGICAL CONCENTRATIONS
Cheknev S. B., Vostrova E. I., Sarycheva M. A., Vostrov A. V.
Abstract
References
1. Meditsinskaya mikrobiologiya. V.I.Pokrovskii, O.K.Pozdeev (red.). M., GEOTAR Meditsina, 1998.
2. Totolyan A.A., Burova L.A. Fc-retseptornye belki Streptococcus pyogenes i patogenez postinfektsionnykh oslozhnenii. Zhurn. mikrobiol. 2014, 3: 78-90.
3. Cheknev S.B., Babaeva E.E., Golub A.E., Denisova E.A., Vorob'eva U.A. Effekty medi i tsinka pri svyazyvanii s chelovecheskim syvorotochnym u-globulinom. Med. immunologiya. 2006, 8 (5-6): 615-622.
4. Cheknev S.B., Vostrova E.I., Piskovskaya L.S., Vostrov A.V. Effekty kationov medi i tsinka, svyazannykh belkami u-globulinovoi fraktsii, v kul'ture Staphylococcus aureus. Zhurn. mikrobiol. 2014, 3: 4-9.
5. Cheknev S.B., Vostrova E.I., Apresova M.A., Piskovskaya L.S., Vostrov A.V. Tormozhenie rosta bakterii v kul'turakh Staphylococcus aureus i Pseudomonas aeruginosa v prisutstvii kationov medi i tsinka. Zhurn. mikrobiol. 2015, 2: 9-17.
6. Ammendola S., Pasquali R., Pistoia C. et al. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immunity. 2007, 75 (12): 5867-5876.
7. Borza D.-B., Morgan W.T. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by pH and metals. J. Biol. Chemistry. 1998,273 (10): 5493-5499.
8. Botella H., Stadthagen G., Lugo-Villarino G. et al. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol. 2012, 20(3): 106-112.
9. Conrady D.G., Brescia C.C., Horii K. et al. A zinc-dependent adhesion molecule is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA. 2008, 105 (49): 19456-19461.
10. Corbin B.D., Seeley E.H., Raah A. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008, 319 (15): 962-965.
11. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc in enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75 (12): 5974-5984.
12. Espirito Santo C., Lam E.W., Elowsky C.G. et al. Bacterial killing by dry metallic copper surfaces. Appl. Environm. Microbiol. 2011, 77 (3): 794-802.
13. Golub E.E., Cheruka J., Boosz B. et al. A comparison of bacterial aggregation induced by saliva, lysozyme, and zinc. Infect. Immunity. 1985, 48 (1): 204-210.
14. Gorgani N.N., Parish C.R., Altin J.G. Differential binding of histidine-rich glycoprotein (HRG) to human IgG subclasses and IgG molecules containing k and A. light chains. J. Biol. Chemistry. 1999, 274 (42): 29633-29640.
15. GrassG., RensingC., SoliozM. Metallic copperas an antimicrobial surface. Appl. Environm. Microbiol. 2011. 77 (5): 1541-1547.
16. Hodgkinson V, Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chemistry. 2012, 287 (17): 13549-13555.
17. Hood M.I., SkaarE.P. Nutritional immunity: transition metals at the pathogen-host interface. Nature Rev. Microbiol. 2012, 10: 525-537.
18. Lu Y. Metal ions as matchmakers for proteins. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1811-1812.
19. Remy L., Carriere M., Derre-Bobillot M. et al. The Staphylococcus aureus Oppl ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Molec. Microbiol. 2013, 87 (4): 730-743.
20. Rink L., Kirchner H. Zinc-altered immune function and cytokine production. J. Nutrition. 2000, 130(5, Suppl.): 1407-1411.
21. Salgado E.N., Ambroggio X.I., Brodin J.D. et al. Metal templated design of protein interfaces. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1827-1832.
22. Samanovic M.I., Ding C., Thiele D.J., Darwin K.H. Copper in microbial pathogenesis: med-ding with the metal. Cell Host Microbe. 2012, 11: 106-115.
23. Shafeeq S., Kuipers O.P., Kloosterman T.G. The role of zinc in the interplay between pathogenic streptococci and their hosts. Molec. Microbiol. 2013, 88 (6): 1047-1057.
24. Stafford S.L., Bokil N.J., Achard M.E.S. et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Reports. 2013, 33 (4): 541-554.
25. Waldron K. J., Robinson N. J. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev. Microbiol. 2009, 7: 25-35.
26. Yamamoto K., Ishihama A. Transcriptional response of Escherichia coli to external zinc. J. Bacteriol. 2005, 187 (18): 6333-6340.
События
-
Научный периодический электронный рецензируемый студенческий журнал «Scientia Juvenum» теперь на Elpub >>>
30 окт 2025 | 12:58 -
Журнал «Северо-Кавказский юридический вестник» присоединился к Elpub >>>
29 окт 2025 | 12:53 -
К платформе Elpub присоединился журнал «Государственное и муниципальное управление. Ученые записки» >>>
29 окт 2025 | 12:52 -
Журнал «Природопользование» присоединился к Elpub >>>
27 окт 2025 | 12:07 -
Журнал «Вестник Сибирского государственного университета путей сообщения» присоединился к Elpub! >>>
23 окт 2025 | 11:23
