Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; : 117-125

Твердофазный иммуноферментный анализ: история, теория и практическое использование

Тараканова Ю. Н., Дмитриев А. Д., Дмитриев Д. А., Лавров В. Ф., Массино Ю. С., Печелюлько А. А., Сегал О. Л.

https://doi.org/10.36233/0372-9311-2019-3-117-125

Аннотация

Иммуноферментный твердофазный анализ (ИФА) играет значительную роль в развитии ряда важных направлений биологии и медицины, в том числе для диагностики опасных инфекций. В настоящем обзоре освещается история изобретения твердофазного ИФА, его дальнейшее усовершенствование и применение. Особый акцент сделан на факторах, влияющих на взаимодействие между антителами и антигенами на твердой фазе и их использовании для увеличения аналитической чувствительности твердофазного ИФА, включая сэндвич-метод определения антигенов.

Список литературы

1. Егоров А.М., Осипов А.П., Дзантиев Б.Б., Гаврилова Е.М. Теория и практика иммуноферментного анализа. М., Высшая школа, 1991.

2. Печелюлько А.А., Тараканова Ю.Н., Дмитриев Д.А. и др. Сравнительный анализ эффективности использования антител птиц и млекопитающих с сэндвич-методе определения HBsAg. Прикладная биохимия и микробиология. 2017, 53(1):104-114.

3. Тараканова Ю.Н., Дмитриев А.Д., Массино Ю.С. и др. Влияние рН адсорбционных буферов на количество и антигенсвязывающую активность моноклональных антител, иммобилизованных на поверхность полистироловых планшетов. Прикладная биохимия и микробиология. 2017, 51(4):424-433.

4. Butler J.E. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. In: Methods in molecular medicine: Molecular Diagnosis of Infectious Diseases. Eds.: Decker J. and Reischl U. Humana Press Inc., 2004, p. 333-372.

5. Butler J.E., Ni L., Brown WR. et al. The immunochemistry of sandwich ELISAs. VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Mol. Immunol. 1993, 30(13):1165-1175.

6. Cuvelier A., Bourguignon J., Muir J.F. et al. Substitution of carbonate by acetate buffer for IgG coating in sandwich ELISA. J. Immunoassay. 1996, 17(4):371-382.

7. Dmitriev A.D., Tarakanova J.N., Yakovleva D.A. et al. Monoclonal antibodies requiring coating buffer with low pH for efficient antigen capture in sandwich ELISA: the rarities or practically important phenomena? J. Immunoassay. Immunochem. 2013, 34(4):414-437.

8. Dmitriev D.A., Massino Y.S., Segal O.L. Kinetic analysis of interactions between bispecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J. Immunol. Methods. 2003, 280(1-2):183-202.

9. Ehrlich P.H, Moyle W.R. Specificity considerations in cooperative immunoassays. Clin. Chem. 1984, 30(9):1523-1532.

10. Ekins R., Edwards P. On the Meaning of «Sensitivity». Clin. Chem. 1997, 43(10):1824-1831.

11. Engvall Е. The ELISA, Enzyme-Linked Immunosorbent Assay. Clinical Chemistry. 2010, 56(2):319-320.

12. Immunochemistry of Solid-Phase Immunoassay (first edition). Ed.: Butler J.E. Boca Raton, Fl., CRC Press, 1991.

13. Jackson A.P., Siddle K., Thompson R.J. A monoclonal antibody to human brain-type creatine kinase. Increased avidity with mercaptans. Biochem J. 1983, 215(3):505-512.

14. Jordan W. Part 155. Antigen Measurement Using ELISA. In: The Protein Protocols Handbook (Second edition). Ed.: Walker J.M. Humana Press Inc., 2002, p. 1083-1087.

15. Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefine specificity. Nature. 1975, 256:495-497.

16. Lequin R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51(12):2415-2418.

17. Liu F., Dubey M., Takahashi H. et al. Immobilized Antibody Orientation Analysis using Secondary Ion Mass Spectrometry and Fluorescence Imaging of Affinity-generated Patterns. Analyt. Chem. 2010, 82(7):2047-2058.

18. McDermed J.E., Sanders R., Fait S. et al. Nucleic acid detection immunoassay for prostate-specific antigen based on immuno-PCR methodology. Clin. Chem. 2012, 58(4):732-740.

19. Pardue H. L. Counterpoint The inseparable triad: analytical sensitivity, measurement uncertainty, and quantitative resolution. Clinical Chemistry. 1997, 43(10):1831-1837.

20. Pei X., Zhang B., Tang J. et al. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta. 2013, 758(3):1-18.

21. Peterman J.H. Immunochemical considerations in the analysis of data from non-competitive solid-phase immunoassays. In: Immunochemistry of Solid-Phase Immunoassay (first edition). Ed.: Butler J.E. Boca Raton, Fl., CRC Press, 1991, p. 47-65.

22. Porstmann T., Kiessig S.T Enzyme immunoassay techniques. An overview. J. Immunol Methods. 1992, 150(1-2):5-21.

23. Wu A.H. A selected history and future of immunoassay development and applications in clinical chemistry. Clin. Chim. Acta. 2006, 369(2):119-124.

24. Yu Z.T, Guan H., Cheung M.K. et al. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA. Sci. Rep. 2015, 5:11339.

25. Zhang S., Garcia-D’Angeli A., Brennan J.P. et al. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. The Analyst. 2013, 139(2):439-445.

Journal of microbiology, epidemiology and immunobiology. 2019; : 117-125

The enzyme-linked immunosorbent assay (ELISA): history, theory and application

Tarakanova Yu. N., Dmitriev A. D., Dmitriev D. A., Lavrov V. F., Massino Yu. S., Pechelyulko А. A., Segal O. L.

https://doi.org/10.36233/0372-9311-2019-3-117-125

Abstract

Enzyme-linked immunosorbent assay (ELISA) play a significant role in the development of many important fields of biology and medicine, including the detection of the dangerous infections agents. In the present review there is described the history of ELISA’s invention, further improvement of this method and application in modern biology and medicine. The special accent is made on factors influencing antibody-antigen interactions on the solid phase and their use to increase the analytical sensitivity of the method.

References

1. Egorov A.M., Osipov A.P., Dzantiev B.B., Gavrilova E.M. Teoriya i praktika immunofermentnogo analiza. M., Vysshaya shkola, 1991.

2. Pechelyul'ko A.A., Tarakanova Yu.N., Dmitriev D.A. i dr. Sravnitel'nyi analiz effektivnosti ispol'zovaniya antitel ptits i mlekopitayushchikh s sendvich-metode opredeleniya HBsAg. Prikladnaya biokhimiya i mikrobiologiya. 2017, 53(1):104-114.

3. Tarakanova Yu.N., Dmitriev A.D., Massino Yu.S. i dr. Vliyanie rN adsorbtsionnykh buferov na kolichestvo i antigensvyazyvayushchuyu aktivnost' monoklonal'nykh antitel, immobilizovannykh na poverkhnost' polistirolovykh planshetov. Prikladnaya biokhimiya i mikrobiologiya. 2017, 51(4):424-433.

4. Butler J.E. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. In: Methods in molecular medicine: Molecular Diagnosis of Infectious Diseases. Eds.: Decker J. and Reischl U. Humana Press Inc., 2004, p. 333-372.

5. Butler J.E., Ni L., Brown WR. et al. The immunochemistry of sandwich ELISAs. VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Mol. Immunol. 1993, 30(13):1165-1175.

6. Cuvelier A., Bourguignon J., Muir J.F. et al. Substitution of carbonate by acetate buffer for IgG coating in sandwich ELISA. J. Immunoassay. 1996, 17(4):371-382.

7. Dmitriev A.D., Tarakanova J.N., Yakovleva D.A. et al. Monoclonal antibodies requiring coating buffer with low pH for efficient antigen capture in sandwich ELISA: the rarities or practically important phenomena? J. Immunoassay. Immunochem. 2013, 34(4):414-437.

8. Dmitriev D.A., Massino Y.S., Segal O.L. Kinetic analysis of interactions between bispecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J. Immunol. Methods. 2003, 280(1-2):183-202.

9. Ehrlich P.H, Moyle W.R. Specificity considerations in cooperative immunoassays. Clin. Chem. 1984, 30(9):1523-1532.

10. Ekins R., Edwards P. On the Meaning of «Sensitivity». Clin. Chem. 1997, 43(10):1824-1831.

11. Engvall E. The ELISA, Enzyme-Linked Immunosorbent Assay. Clinical Chemistry. 2010, 56(2):319-320.

12. Immunochemistry of Solid-Phase Immunoassay (first edition). Ed.: Butler J.E. Boca Raton, Fl., CRC Press, 1991.

13. Jackson A.P., Siddle K., Thompson R.J. A monoclonal antibody to human brain-type creatine kinase. Increased avidity with mercaptans. Biochem J. 1983, 215(3):505-512.

14. Jordan W. Part 155. Antigen Measurement Using ELISA. In: The Protein Protocols Handbook (Second edition). Ed.: Walker J.M. Humana Press Inc., 2002, p. 1083-1087.

15. Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefine specificity. Nature. 1975, 256:495-497.

16. Lequin R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51(12):2415-2418.

17. Liu F., Dubey M., Takahashi H. et al. Immobilized Antibody Orientation Analysis using Secondary Ion Mass Spectrometry and Fluorescence Imaging of Affinity-generated Patterns. Analyt. Chem. 2010, 82(7):2047-2058.

18. McDermed J.E., Sanders R., Fait S. et al. Nucleic acid detection immunoassay for prostate-specific antigen based on immuno-PCR methodology. Clin. Chem. 2012, 58(4):732-740.

19. Pardue H. L. Counterpoint The inseparable triad: analytical sensitivity, measurement uncertainty, and quantitative resolution. Clinical Chemistry. 1997, 43(10):1831-1837.

20. Pei X., Zhang B., Tang J. et al. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta. 2013, 758(3):1-18.

21. Peterman J.H. Immunochemical considerations in the analysis of data from non-competitive solid-phase immunoassays. In: Immunochemistry of Solid-Phase Immunoassay (first edition). Ed.: Butler J.E. Boca Raton, Fl., CRC Press, 1991, p. 47-65.

22. Porstmann T., Kiessig S.T Enzyme immunoassay techniques. An overview. J. Immunol Methods. 1992, 150(1-2):5-21.

23. Wu A.H. A selected history and future of immunoassay development and applications in clinical chemistry. Clin. Chim. Acta. 2006, 369(2):119-124.

24. Yu Z.T, Guan H., Cheung M.K. et al. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA. Sci. Rep. 2015, 5:11339.

25. Zhang S., Garcia-D’Angeli A., Brennan J.P. et al. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. The Analyst. 2013, 139(2):439-445.