Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 55-61

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА ИЗОЛЯТОВ ПАРВОВИРУСА B19, ЦИРКУЛИРУЮЩИХ НА ТЕРРИТОРИИ СЕВЕРОЗАПАДНОГО ФЕДЕРАЛЬНОГО ОКРУГА

Хамитова И. В., Останкова Ю. В., Антипова А. Ю., Семенов А. В., Лаврентьева И. Н.

https://doi.org/10.36233/0372-9311-2018-6-55-61

Аннотация

Цель. Генотипирование и молекулярно-генетическая характеристика парвовируса В19, циркулирующего на территории Северо-Западного федерального округа. Материалы и методы. В работе были использованы образцы сыворотки крови от 821 пациента с макуло-папулезной сыпью, поступившие в Санкт-Петербургский Региональный Центр по надзору за корью и краснухой в 2009-2017 гг., отрицательные по антителам IgM-корь и IgM-краснуха. В настоящем исследовании мы применили генотипирование на основе прямого секвенирования NS1/VP1 области генома парвовируса В19. Результаты. ДНК вируса выявлена у 59 (42,4%) серопозитивных больных. Для оценки гетерогенности изолятов были выбраны 14 образцов от пациентов из географически удаленных регионов СЗФО, разного возраста, вне зависимости от пола, с высокой вирусной нагрузкой (106-107 копий/мл). При филогенетическом анализе было показано, что во всех изолятах выявлен только генотип 1А. При этом нуклеотидные последовательности можно разделить на две подгруппы: 13 изолятов (92,8%) относились к подгруппе 1А2, один изолят к подгруппе 1А1. Заключение. Внедрение скрининга B19 от пациентов с лихорадкой/сыпью способно представить значимую информацию о распространенности парвовирусной инфекции в Российской Федерации. Выявление новых мутаций вируса и дальнейший анализ их возможных взаимосвязей с течением заболевания может помочь в разработке лекарств, а также в разработке эффективной вакцины против парвовируса В19.
Список литературы

1. Broliden K., Tolfvenstam T., Norbeck O. Clinical aspects of parvovirus B19 infection. J. Intern. Med. 2006, 260(4): 285-304.

2. Candotti D., Etiz N., Parsyan A. et al. Identification and characterization of persistent human erythrovirus infection in blood donor samples. J. Virol. 2004, 78: 2169-12178.

3. Cohen B.J., Gandhi J., Clewley J.P. Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing. J. Clin. Virol. 2006, 36(2): 152-155.

4. Duffy S., Shackelton L.A., Holmes E.C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 2008, 9: 267-276.

5. Gallinella G., Venturoli S., Manaresi E. et al. B19 virus genome diversity: epidemiological and clinical correlations. J. Clin. Virol. 2003, 28(1):1-13.

6. Hubschen J.M., Mihneva Z., Mentis A.F. et al. Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J. Clin. Microbiol. 2009, 47(11): 3735-3738.

7. Kuhl U., Lassner D., Pauschinger M. et al. Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J. Med. Virol. 2008, 80(7):1243-1251.

8. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016, 33(7):1870-1874.

9. Molenaar-de Backer M.W., Lukashov V.V., van Binnendijk R.S. et al. Global co-existence of two evolutionary lineages of parvovirus B19 1a, different in genome-wide synonymous positions. PLoS One. 2012, 7(8): e43206.

10. Norja P., Hokynar K., Aaltonen L.M. et al. Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc. Natl. Acad. Sci. USA. 2006, 103(19):7450-7453.

11. Sanabani S., Neto W. K., Pereira J. et al. Sequence variability of human erythroviruses present in bone marrow of Brazilian patients with various parvovirus B19-related hematological symptoms. J. Clin. Microbiol. 2006, 44: 604-606.

12. Servant A., Laperche S., Lallemand F. et al. Genetic diversity within human erythroviruses: identification of three genotypes. J. Virol. 2002, 76: 9124-9134.

13. Shackelton L.A., Holmes E.C. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J. Virol. 2006, 806: 3666-3669.

14. Suzuki M., Yoto Y., Ishikawa A. et al. Analysis of nucleotide sequences of human parvovirus B19 genome reveals two different modes of evolution, a gradual alteration and a sudden replacement: a retrospective study in Sapporo, Japan, from 1980 to 2008. J. Virol. 2009, 83:10975-10980.

15. Toan N.L., Duechting A., Kremsner P.G. et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J. Gen. Virol. 2006, 87: 2941-2949.

Journal of microbiology, epidemiology and immunobiology. 2018; : 55-61

MOLECULAR-GENETIC CHARACTERISTICS OF PARVOVIRUS B19 ISOLATES CIRCULATING IN THE NORTH-WESTERN FEDERAL DISTRICT

Khamitova I. V., Ostankova Yu. V., Antipova A. Yu., Semenov A. V., Lavrentieva I. N.

https://doi.org/10.36233/0372-9311-2018-6-55-61

Abstract

Aim. Genotyping and molecular genetic characteristics of parvovirus B19, circulating in the NorthWest Federal District. Material and Methods. The material of the study is based on serum samples from 821 patients with maculopapular rash negative for antibodies IgM-measles and IgM-rubella were received at the St. Petersburg Regional Center for Measles and Rubella Surveillance in 2009-2017. In the present study we used genotyping by direct sequencing of the NS1/VP1 region of Parvovirus B19 genome. Results. DNA of the virus was detected in 59 (42.4%) of seropositive patients. To assess the heterogeneity of isolates, 14 samples were selected from patients from geographically remote regions of the NWFO, of different ages, regardless of gender, with a high viral load (106-107 copies/ml). Based on the phylogenetic analysis of the isolates showed that only the genotype 1A was detected in all isolates. The nucleotide sequences can be divided into two subgroups: 13 isolates (92.8%) belong to the subgroup 1A2, one isolate to the subgroup 1A1. Conclusion. The introduction of B19 screening from patients with fever / rash can provide meaningful information on the prevalence of parvovirus infection in the Russian Federation. Identifying new mutations of the virus and further analysis of their possible relationships with the course of the mutation disease can help in the development of medicines, as well as in the development of an effective vaccine against the parvovirus B19.
References

1. Broliden K., Tolfvenstam T., Norbeck O. Clinical aspects of parvovirus B19 infection. J. Intern. Med. 2006, 260(4): 285-304.

2. Candotti D., Etiz N., Parsyan A. et al. Identification and characterization of persistent human erythrovirus infection in blood donor samples. J. Virol. 2004, 78: 2169-12178.

3. Cohen B.J., Gandhi J., Clewley J.P. Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing. J. Clin. Virol. 2006, 36(2): 152-155.

4. Duffy S., Shackelton L.A., Holmes E.C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 2008, 9: 267-276.

5. Gallinella G., Venturoli S., Manaresi E. et al. B19 virus genome diversity: epidemiological and clinical correlations. J. Clin. Virol. 2003, 28(1):1-13.

6. Hubschen J.M., Mihneva Z., Mentis A.F. et al. Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J. Clin. Microbiol. 2009, 47(11): 3735-3738.

7. Kuhl U., Lassner D., Pauschinger M. et al. Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J. Med. Virol. 2008, 80(7):1243-1251.

8. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016, 33(7):1870-1874.

9. Molenaar-de Backer M.W., Lukashov V.V., van Binnendijk R.S. et al. Global co-existence of two evolutionary lineages of parvovirus B19 1a, different in genome-wide synonymous positions. PLoS One. 2012, 7(8): e43206.

10. Norja P., Hokynar K., Aaltonen L.M. et al. Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc. Natl. Acad. Sci. USA. 2006, 103(19):7450-7453.

11. Sanabani S., Neto W. K., Pereira J. et al. Sequence variability of human erythroviruses present in bone marrow of Brazilian patients with various parvovirus B19-related hematological symptoms. J. Clin. Microbiol. 2006, 44: 604-606.

12. Servant A., Laperche S., Lallemand F. et al. Genetic diversity within human erythroviruses: identification of three genotypes. J. Virol. 2002, 76: 9124-9134.

13. Shackelton L.A., Holmes E.C. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J. Virol. 2006, 806: 3666-3669.

14. Suzuki M., Yoto Y., Ishikawa A. et al. Analysis of nucleotide sequences of human parvovirus B19 genome reveals two different modes of evolution, a gradual alteration and a sudden replacement: a retrospective study in Sapporo, Japan, from 1980 to 2008. J. Virol. 2009, 83:10975-10980.

15. Toan N.L., Duechting A., Kremsner P.G. et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J. Gen. Virol. 2006, 87: 2941-2949.