Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 53-60

МИКРОБИОТА НИЖНИХ ОТДЕЛОВ ДЫХАТЕЛЬНЫХ ПУТЕЙ ПРИ ХРОНИЧЕСКИХ ОБСТРУКТИВНЫХ ЗАБОЛЕВАНИЯХ ЛЕГКИХ

Мазурина С. А., Данилина Г. А., Смирнова М. Ю., Осипова Г. Л., Гервазиева В. Б., Конищева А. Ю., Оспельникова Т. П.

https://doi.org/10.36233/0372-9311-2018-5-53-60

Аннотация

Цель. Определить композиционный состав микробиоты и частоту выявления отдельных бактериальных видов в образцах мокроты у пациентов с бронхиальной астмой (БА), хронической обструктивной болезнью легких (ХОБЛ) и их сочетанной формой. Материалы и методы. Проведено бактериологическое исследование образцов индуцированной мокроты больных хроническими обструктивными заболеваниями легких (БА, ХОБЛ). Результаты. У больных сочетанной формой БА и ХОБЛ обнаружен более разнообразный видовой состав Streptococcus sрp. и Staphylococcus spр., грамотрицательные палочки Klebsiella pneumoniae, Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, Haemophilus influenzae, Burkholderia cepacia, грамположительные палочки и палочковидные бактерии Corynebacterium spр., Actinomyces spр. и Tsukamurella рaurometabola в сравнении с пациентами, страдающими только астмой или ХОБЛ. Отмечено изменение микробного состава (преобладание Streptococcus spр., Neisseria subflava и снижение Enterococcus sрр.) у пациентов с ХОБЛ и сочетанной формой ХОБЛ и БА, осложненных дыхательной недостаточностью, эмфиземой легких и/или диффузным пневмосклерозом. Заключение. Видовое разнообразие респираторной микробиоты является не только фактором риска прогрессирующего течения легочных заболеваний, но и свидетельствует о тех изменениях в структуре ткани легкого, которые происходят в процессе хронического воспаления.
Список литературы

1. Авдеев С.Н., Шанина А.Г., Чучалин А.Г. Бактериальная инфекция у больных ХОБЛ. Клин. микробиол. антимикроб. химиотер. 2005, 7(3): 245-254.

2. Adami A., Bracken S. Breathing better through bugs: Asthma and the Microbiome. Yale J. Biol. Med. 2016, 89(3): 309-324.

3. Bassis C.M., Erb-Downward J.R., Dickson R.P. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015, 6: e00037. doi: 10.1128/mBio.00037-15.

4. Beck J.M., Young V.B., Huffnagle G.B. The microbiome of the lung. Transl. Res. 2012, 160 (4): 258-266. doi: 10.1016/j.trsl.2012.02.005.

5. Charlson E.S., Bittinger K., Haas A.R. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 2011, 184(8): 957-63. doi: 10.1164/rccm.201104-0655OC.

6. Cui L., Morris A., Huang L. et al. The microbiome and the lung. Ann. Am. Thorac. Soc. 2014, 11 Suppl. 4: S227-32. doi: 10.1513/AnnalsATS.201402-052PL.

7. Dickson R.P., Erb-Downward J.R., Huffnagle G.B. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir. Med. 2014, 2: 238-246. doi: 10.1016/S2213-2600(14)70028-1. pmid:24621685.

8. Dickson R.P., Erb-Downward J.R., Freeman C.M. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 2015, 12(6):821-30. doi: 10.1513/AnnalsATS.201501-029OC.

9. Engel M., Endesfelder D., Schloter-Hai B. et al. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One. 2017, 12(7): e0180859. doi: 10.1371/journal.pone.0180859.

10. Huang Y.J, Nariya S., Harris J.M. et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy. Clin. Immunol. 2015, 136(4):874-84. doi: 10.1016/j.jaci.2015.05.044.

11. Huang Y.J., Sethi S., Murphy T. et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J. Clin. Microbiol. 2014, 52(8):2813-2823.

12. Man W.H., de Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15: 259-270. doi: 10.1038/ nrmicro.2017.14.

13. Morris A., Beck J.M., Schloss P.D. et al. Lung HIV microbiome project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 2013, 187(10): 1067-75. doi: 10.1164/rccm.201210-1913OC.

14. Pragman A.A., Lyu T., Baller J.A. et al. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome. 2018, 6(1): 7. doi: 10.1186/s40168-017-0381-4.

15. Sokolowska M., Frei R., Lunjani N. et al. Microbiome and asthma. Asthma Res. Pract. 2018, 4: 1. doi: 10.1186/s40733-017-0037-y.

16. Venkataraman A., Bassis C.M., Beck J.M. et al. Application of a neutral community model to assess structuring of the human lung microbiome. MBio. 2015, 6(1). pii: e02284-14. doi: 10.1128/mBio.02284-14.

Journal of microbiology, epidemiology and immunobiology. 2018; : 53-60

THE MICROBIOTA OF LOWER AIRWAYS IN PATIENTS WITH CHRONIC OBSTRUCTIVE LUNG DISEASES

Mazurina S. A., Danilina G. A., Smirnova M. Yu., Osipova G. L., Gervazieva V. B., Konischeva A. Yu., Ospelnikova T. P.

https://doi.org/10.36233/0372-9311-2018-5-53-60

Abstract

Aim. We aimed to estimate the composition and the detection frequency of bacterial species in induced sputum samples from patients with bronchial asthma (BA), chronic obstructive lung disease (COPD) and its combined phenotype (ACOS). Materials and methods. Bacteriological examination of samples of induced sputum in patients with chronic obstructive pulmonary diseases (BA, COPD) was carried out. Results. Patients with asthma-COPD overlap syndrome exhibit more diverse bacterial species composition as represented both by gram-positive Streptococcus sрp., Staphylococcus spр., gram-negative Klebsiella pneumoniaе, Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, Haemophilus influenzae, Burkholderia cepacia and rodlike bacterium Corynebacterium spр., Actinomyces spр. и Tsukamurella рaurometabola as compared to patients with only one diagnosis of COPD or asthma. In addition, we revealed the differences between microbiological diversity and predominance of Streptococcus spр, Neisseria subflava with decrease of Enterococcus sрр. in samples from patients with complicated forms of obstructive lung diseases as COPD and ACOS, with pulmonary emphysema and/or pneumosclerosis. Conclusion. The biodiversity of lung microbiome could be one of the pathology risk factors in patients with chronic lung diseases, on the other hand reflecting the structural morphological changes in the lung tissue as a result of sustainable inflammation.
References

1. Avdeev S.N., Shanina A.G., Chuchalin A.G. Bakterial'naya infektsiya u bol'nykh KhOBL. Klin. mikrobiol. antimikrob. khimioter. 2005, 7(3): 245-254.

2. Adami A., Bracken S. Breathing better through bugs: Asthma and the Microbiome. Yale J. Biol. Med. 2016, 89(3): 309-324.

3. Bassis C.M., Erb-Downward J.R., Dickson R.P. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015, 6: e00037. doi: 10.1128/mBio.00037-15.

4. Beck J.M., Young V.B., Huffnagle G.B. The microbiome of the lung. Transl. Res. 2012, 160 (4): 258-266. doi: 10.1016/j.trsl.2012.02.005.

5. Charlson E.S., Bittinger K., Haas A.R. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 2011, 184(8): 957-63. doi: 10.1164/rccm.201104-0655OC.

6. Cui L., Morris A., Huang L. et al. The microbiome and the lung. Ann. Am. Thorac. Soc. 2014, 11 Suppl. 4: S227-32. doi: 10.1513/AnnalsATS.201402-052PL.

7. Dickson R.P., Erb-Downward J.R., Huffnagle G.B. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir. Med. 2014, 2: 238-246. doi: 10.1016/S2213-2600(14)70028-1. pmid:24621685.

8. Dickson R.P., Erb-Downward J.R., Freeman C.M. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 2015, 12(6):821-30. doi: 10.1513/AnnalsATS.201501-029OC.

9. Engel M., Endesfelder D., Schloter-Hai B. et al. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One. 2017, 12(7): e0180859. doi: 10.1371/journal.pone.0180859.

10. Huang Y.J, Nariya S., Harris J.M. et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy. Clin. Immunol. 2015, 136(4):874-84. doi: 10.1016/j.jaci.2015.05.044.

11. Huang Y.J., Sethi S., Murphy T. et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J. Clin. Microbiol. 2014, 52(8):2813-2823.

12. Man W.H., de Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15: 259-270. doi: 10.1038/ nrmicro.2017.14.

13. Morris A., Beck J.M., Schloss P.D. et al. Lung HIV microbiome project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 2013, 187(10): 1067-75. doi: 10.1164/rccm.201210-1913OC.

14. Pragman A.A., Lyu T., Baller J.A. et al. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome. 2018, 6(1): 7. doi: 10.1186/s40168-017-0381-4.

15. Sokolowska M., Frei R., Lunjani N. et al. Microbiome and asthma. Asthma Res. Pract. 2018, 4: 1. doi: 10.1186/s40733-017-0037-y.

16. Venkataraman A., Bassis C.M., Beck J.M. et al. Application of a neutral community model to assess structuring of the human lung microbiome. MBio. 2015, 6(1). pii: e02284-14. doi: 10.1128/mBio.02284-14.