Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; : 24-29

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АНТИМИКРОБНЫХ ПЕПТИДОВ ИЗ ТРОМБОЦИТОВ КУР

Сычева М. В., Васильченко А. С., Рогожин Е. А., Пашкова Т. М., Попова Л. П., Карташова О. Л.

https://doi.org/10.36233/0372-9311-2016-2-24-29

Аннотация

Цель. Выделение и изучение биологической активности антимикробных пептидов из тромбоцитов кур. Материалы и методы. В исследовании использовали пептиды из тромбоцитов кур, полученные методом обращенно-фазовой высокоэффективной жидкостной хроматографии в ступенчатом и линейном градиентах увеличения концентрации органического растворителя. Их антимикробную активность определяли методом микротитрования в бульоне; механизм биологического действия - с помощью метода флуоресцентной спектроскопии с использованием ДНК-тропных красителей. Результаты. Из тромбоцитов кур выделены индивидуальные фракции пептидов, обладающие антимикробной активностью в отношении Staphylococcus aureus P209 и Escherichia coli K12. Установлено нарушение целостности барьерных структур микроорганизмов под воздействием тромбоцитарных антимикробных пептидов и преобладание клеток с поврежденной мембраной в популяции E.coli. Заключение. Полученные данные об антимикробной активности и механизме бактерицидного действия впервые выделенных фракций пептидов из тромбоцитов кур расширяют представление о функциональных свойствах тромбоцитов птиц и открывают перспективу для их дальнейшего изучения с целью использования в качестве антимикробного средства.
Список литературы

1. Резистентность к противомикробным препаратам: повторение «трагедии общего достояния». Бюллетень ВОЗ. 2010, 88 (11): 805-806.

2. Aktan I., Dunkel B., Cunningham F.M. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Veterinary Immunol. Immunopathol. 2013, 152 (3-4): 209-217.

3. Aziz A.-M. The role of healthcare strategies in controlling antibiotic resistance. British J. Nursing. 2013, 22 (18): 1066-1074.

4. Brodgen K.F. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3 (3): 238-250.

5. Dankert J., Krijgsveld J., Van der Werff J. et al. Platelet microbicidal activity is an important defense factor against viridans Streptococcal endocarditis. J. Infect. Dis. 2001, 184: 597-605.

6. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. Influenzae. Br. J. Exp. Pathol. 1929, 10: 226-236.

7. Forde E., Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules. 2015, 20 (1): 1210-1227.

8. Ivanov I.B., Gritsenko V.A. Comparative activities of cattle and swine platelet microbicidal proteins. Probiotics Antimicrob. Proteins. 2009, 1 (2): 148-151.

9. Jenssen H., Hamill P., Hancock R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19 (3): 491-511.

10. Mohan K.V.K., Rao S.S., Gao Y. et al. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets. Clin. Microbiol. Infect. 2014, 20 (1): 39-46.

11. Tang Y.-Q., Yeaman M.R., Selsted M.E. Antimicrobial peptides from human platelets. Infect. Immunity. 2002, 70 (12): 6524-6533.

12. Vasilchenko A., Dymova V., Kartashova O. et al. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics Antimicrob. Proteins. 2015, 7 (1): 60-65.

13. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014, 7 (5): 545594.

14. Wiegand I., Hilpert K., Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008, 3 (2): 163-175.

15. Yamasaki K., Gallo R.L. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 2008, 18 (1): 11-21.

16. Yeaman M.R. Platelets: At the nexus of antimicrobial defence. Nature Rev. Microbiol. 2014, 12 (6): 426-437.

17. Yount N.Y, Gank K.D., Xiong YQ. et al. Platelet microbicidal protein 1: Structural themes of a multifunctional antimicrobial peptide. Antimicrob. Agents Chemother. 2004, 48 (11): 4395-4404.

18. Yurong Y., Yibao J., Ruiping S. et al. Effects of chicken intestinal antimicrobial peptides on humoral immunity of chickens and antibody titres after vaccination with infectious bursal disease virus vaccine in chicken. Archives Animal Nutrition. 2006, 60 (5): 427-435.

19. Zhu X., Dong N., Wang Z. et al. Design of imperfectly amphipathic a-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomaterialia. 2014, 10 (1): 244-257.

Journal of microbiology, epidemiology and immunobiology. 2016; : 24-29

BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES

Sycheva M. V., Vasilchenko A. S., Rogozhin E. A., Pashkova T. M., Popova L. P., Kartashova O. L.

https://doi.org/10.36233/0372-9311-2016-2-24-29

Abstract

Aim. Isolation and study ofbiological activity of antimicrobial peptides from chickens thrombocytes. Materials and methods. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect - by using fluorescent spectroscopy method with DNA-tropic dyes. Results. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. Conclusion. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.
References

1. Rezistentnost' k protivomikrobnym preparatam: povtorenie «tragedii obshchego dostoyaniya». Byulleten' VOZ. 2010, 88 (11): 805-806.

2. Aktan I., Dunkel B., Cunningham F.M. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Veterinary Immunol. Immunopathol. 2013, 152 (3-4): 209-217.

3. Aziz A.-M. The role of healthcare strategies in controlling antibiotic resistance. British J. Nursing. 2013, 22 (18): 1066-1074.

4. Brodgen K.F. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3 (3): 238-250.

5. Dankert J., Krijgsveld J., Van der Werff J. et al. Platelet microbicidal activity is an important defense factor against viridans Streptococcal endocarditis. J. Infect. Dis. 2001, 184: 597-605.

6. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. Influenzae. Br. J. Exp. Pathol. 1929, 10: 226-236.

7. Forde E., Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules. 2015, 20 (1): 1210-1227.

8. Ivanov I.B., Gritsenko V.A. Comparative activities of cattle and swine platelet microbicidal proteins. Probiotics Antimicrob. Proteins. 2009, 1 (2): 148-151.

9. Jenssen H., Hamill P., Hancock R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19 (3): 491-511.

10. Mohan K.V.K., Rao S.S., Gao Y. et al. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets. Clin. Microbiol. Infect. 2014, 20 (1): 39-46.

11. Tang Y.-Q., Yeaman M.R., Selsted M.E. Antimicrobial peptides from human platelets. Infect. Immunity. 2002, 70 (12): 6524-6533.

12. Vasilchenko A., Dymova V., Kartashova O. et al. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics Antimicrob. Proteins. 2015, 7 (1): 60-65.

13. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014, 7 (5): 545594.

14. Wiegand I., Hilpert K., Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008, 3 (2): 163-175.

15. Yamasaki K., Gallo R.L. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 2008, 18 (1): 11-21.

16. Yeaman M.R. Platelets: At the nexus of antimicrobial defence. Nature Rev. Microbiol. 2014, 12 (6): 426-437.

17. Yount N.Y, Gank K.D., Xiong YQ. et al. Platelet microbicidal protein 1: Structural themes of a multifunctional antimicrobial peptide. Antimicrob. Agents Chemother. 2004, 48 (11): 4395-4404.

18. Yurong Y., Yibao J., Ruiping S. et al. Effects of chicken intestinal antimicrobial peptides on humoral immunity of chickens and antibody titres after vaccination with infectious bursal disease virus vaccine in chicken. Archives Animal Nutrition. 2006, 60 (5): 427-435.

19. Zhu X., Dong N., Wang Z. et al. Design of imperfectly amphipathic a-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomaterialia. 2014, 10 (1): 244-257.