Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 58-67

ИЗУЧЕНИЕ ГЕНЕТИЧЕСКОЙ СТАБИЛЬНОСТИ СУБ-ШТАММА M. BOVIS BCG-1 (RUSSIA) В ПРОЦЕССЕ ПРОИЗВОДСТВА ВАКЦИНЫ БЦЖ

Отрашевская Е. В., Винокурова В. Н., Шитиков Е. А., Сотникова Е. А., Перевышина Т. А., Колченко С. А., Бутусова Т. Б., Кострюкова Е. С., Ильина Е. Н., Игнатьев Г. М.

https://doi.org/10.36233/0372-9311-2018-2-58-67

Аннотация

Цель. Изучение структуры генома и анализ стабильности генетических свойств субштамма M. bovis BCG-1 (Russia), применяемого для производства вакцин. Материалы и методы. Было проведено полногеномное секвенирование и последующий сравнительный анализ образцов суб-штамма M. bovis BCG-1 (Russia) от рабочего банка до конечного пассажа производственного культивирования, а также производственных серий. Молекулярно-биологическими методами был проведен анализ числа тандемных повторов (VNTR) по 24 локусам и сполиготипирование. Результаты. Последовательность субштамма M. bovis BCG-1 (Russia) рабочего посевного банка была полностью собрана, аннотирована и депонирована в базу GenBank. Анализ DU2- и RD-регионов подтвердил принадлежность суб-штамма М. bovis BCG-1 (Russia) к группе DU2-I, BCG Russia. Полногеномное выравнивание образцов суб-штамма производственных серий вакцины на геном M. bovis BCG-1 (Russia) рабочего банка не выявило структурных отличий. Сполиготипирование и VNTR-профиль также продемонстрировали идентичность структур. Заключение. Результатом проведенного исследования явилось как подтверждение подлинности производственного суб-штамма M. bovis BCG-1 (Russia), так и демонстрация его генетической стабильности в процессе производства вакцины БЦЖ и БЦЖ-М. Стабильность генома суб-штамма опосредованно подтверждает стабильность производственных условий культивирования и качество производственного процесса.
Список литературы

1. Леви Д.Т., Обухов Ю.И., Александрова Н.В., Волкова Р.А., Эльберт Е.В., Альварес Фигероа М.В., Прокопенко А.В., Луданный Р.И.Оценка подлинности и стабильности вакцины БЦЖ методом мультиплексной ПЦР. Биопрепараты. Профилактика, диагностика, лечение. 2016, 16 (1): 49-53.

2. Abdallah A.M., Hill-Cawthorne G.A., Otto T.D. et al. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cellwall adaptations. Sci. Rep. 2015, 5: 15443 (online).

3. Bedwell J., Kairo S.K., Behr M.A., Bygraves J.A. Identification of substrains of BCG vaccine using multiplex PCR. Vaccine. 2001, 19: 2146-2151.

4. Bespyatykh J.A., Zimenkov D.V., Shitikov E.A. et al. Spoligotyping of Mycobacterium tuberculosis complex isolates using hydrogel oligonucleotide microarrays. Infection, Genetics, Evolution, 2014, doi:http://dx.doi.org/l0.1016/j.meegid.2014.04.024.

5. Boetzer M., Henkel C.V., Jansen H.J. et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2001, 4: 578-579.

6. Brosch R., Gordon S.V., Garnier T. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Nat. Acad. Sci. USA. 2007, 13: 5596-5601.

7. Coll F., Mallard K., Preston M.D. et al. SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics. 2012, 22: 29912993.

8. Delcher A.L., Phillippy A., Carlton J., Salzberg S.L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002, 11: 2478-2483.

9. Knezevic I., Corbel M.J. WHO discussion on the improvement of the quality control of BCG vaccines. Pasteur Institute, Paris, France, 7 June 2005. Vaccine, 2006, 24: 3874-3877.

10. Koboldt D.C., Zhang Q., Larson D.E. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012, 3: 568-576.

11. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012, 4: 357-359.

12. Leung A.S., Tran V., Wu Z. et al. Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics. 2008, 9: 413.

13. Li H., Handsaker B., Wysoker A. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 16: 2078-2079.

14. Magdalena J., Supply P., Locht C. Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J. Clin. Microbiol. 1998, 9: 2471-2476.

15. Markey K., Ho M.M., Choudhury B. et al. Report of an international collaborative study to evaluate the suitability of multiplex PCR as an identity assay for different sub-strains of BCG vaccine. Vaccine. 2010, 28: 6964-6969.

16. Mostowy S., Tsolaki A.G., Small P.M. et al. The in vitro evolution of BCG vaccines. Vaccine. 2003, 21: 4270-4274.

17. Pan Y., Yang X., Duan J. et al. Whole-Genome sequences of four Mycobacterium bovis BCG vaccine strains. J. Bacteriol. 2011, 12: 3152-3153.

18. Pym A.S., Brosch R. Tools for the population genomics of the tubercle bacilli. Genome Res. 2000,12: 1837-1839.

19. Sotnikova E.A., Shitikov E.A., Malakhova M.V. et al. Complete genome sequence of Mycobacterium bovis strain BCG-1 (Russia). Genome Announcements. 2016, 4: 1-2.

20. Stefanova T. Quality control and safety assessment of BCG vaccines in the post-genomic era. Biotechnology Biotechnological Equipment. 2014, 28: 387-391.

21. Supply Р., Allix C., Lesjean S. et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 12: 4498-4510.

22. WHO. Informal Consultation on Standardization and Evaluation of BCG Vaccines, 22-23 September 2009, WHO, Geneva, Switzerland. p.1-25

23. WHO. Information Sheet observed rate of vaccine reactions Bacille Calmette -Guerin (BCG) vaccine. Global Vaccine Safety, Immunization, Valines and Biologicals. Geneva. April 2012. p. 1-5.

24. WHO. Report WHO Consultation on the characterisation of BCG vaccines. Geneva, Switzerland, 8-9 December, 2004. p. 1-8.

Journal of microbiology, epidemiology and immunobiology. 2018; : 58-67

M. BOVIS BCG-1 (RUSSIA) SUB-STRAIN GENOME STABILITY INVESTIGATION WITHIN THE ENTIRE PRODUCTION PROCESS

Otrashevskaya E. V., Vinokurova V. N., Shilikov E. A., Sotnikova E. A., Perevyshina T. A., Kolchenko S. A., Butusova T. B., Kostryukova E. S., Ilina E. N., Ignalev G. M.

https://doi.org/10.36233/0372-9311-2018-2-58-67

Abstract

Aim. The aim of the current study was to analyze the genome structure of the M. bovis BCG-1 (Russia) sub-strain, used for the vaccine production, as well as its genome stability within the entire production process. Materials and methods. Whole genome sequencing and M. bovis BCG-1 (Russia) working seed lot and for the last production passage of the sub-strain cultivation from a number of the vaccine batches. Additionally, VNTR sequences of 24 locus analyses, RD patterns comparison, as well as spoligotyping were performed. Results. The whole genome sequence of the M. bovis BCG-1 (Russia) working seed lot was assembled, annotated and deposited to GenBank. On the basis of DU2- and RD-regions analyzes M. bovis BCG-1 (Russia) sub-strain was confirmed to be belonged to BCG Russia strains of DU2-I group. Whole genome sequencing followed by comparative analysis of RD patterns and SNPs confirmed the stability of the vaccine sub-strain genome from the working seed lot to a number of the vaccine batches obtained within the two-years period. VNTR profile and spoligopattern exactly matched the M. bovis BCG-1 (Russia). Conclusion. Thus the M. bovis BCG-1 (Russia) sub-strain genome identity and stability have been studied and demonstrated. The obtained result confirmed the vaccine production process consistency.
References

1. Levi D.T., Obukhov Yu.I., Aleksandrova N.V., Volkova R.A., El'bert E.V., Al'vares Figeroa M.V., Prokopenko A.V., Ludannyi R.I.Otsenka podlinnosti i stabil'nosti vaktsiny BTsZh metodom mul'tipleksnoi PTsR. Biopreparaty. Profilaktika, diagnostika, lechenie. 2016, 16 (1): 49-53.

2. Abdallah A.M., Hill-Cawthorne G.A., Otto T.D. et al. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cellwall adaptations. Sci. Rep. 2015, 5: 15443 (online).

3. Bedwell J., Kairo S.K., Behr M.A., Bygraves J.A. Identification of substrains of BCG vaccine using multiplex PCR. Vaccine. 2001, 19: 2146-2151.

4. Bespyatykh J.A., Zimenkov D.V., Shitikov E.A. et al. Spoligotyping of Mycobacterium tuberculosis complex isolates using hydrogel oligonucleotide microarrays. Infection, Genetics, Evolution, 2014, doi:http://dx.doi.org/l0.1016/j.meegid.2014.04.024.

5. Boetzer M., Henkel C.V., Jansen H.J. et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2001, 4: 578-579.

6. Brosch R., Gordon S.V., Garnier T. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Nat. Acad. Sci. USA. 2007, 13: 5596-5601.

7. Coll F., Mallard K., Preston M.D. et al. SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics. 2012, 22: 29912993.

8. Delcher A.L., Phillippy A., Carlton J., Salzberg S.L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002, 11: 2478-2483.

9. Knezevic I., Corbel M.J. WHO discussion on the improvement of the quality control of BCG vaccines. Pasteur Institute, Paris, France, 7 June 2005. Vaccine, 2006, 24: 3874-3877.

10. Koboldt D.C., Zhang Q., Larson D.E. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012, 3: 568-576.

11. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012, 4: 357-359.

12. Leung A.S., Tran V., Wu Z. et al. Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics. 2008, 9: 413.

13. Li H., Handsaker B., Wysoker A. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 16: 2078-2079.

14. Magdalena J., Supply P., Locht C. Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J. Clin. Microbiol. 1998, 9: 2471-2476.

15. Markey K., Ho M.M., Choudhury B. et al. Report of an international collaborative study to evaluate the suitability of multiplex PCR as an identity assay for different sub-strains of BCG vaccine. Vaccine. 2010, 28: 6964-6969.

16. Mostowy S., Tsolaki A.G., Small P.M. et al. The in vitro evolution of BCG vaccines. Vaccine. 2003, 21: 4270-4274.

17. Pan Y., Yang X., Duan J. et al. Whole-Genome sequences of four Mycobacterium bovis BCG vaccine strains. J. Bacteriol. 2011, 12: 3152-3153.

18. Pym A.S., Brosch R. Tools for the population genomics of the tubercle bacilli. Genome Res. 2000,12: 1837-1839.

19. Sotnikova E.A., Shitikov E.A., Malakhova M.V. et al. Complete genome sequence of Mycobacterium bovis strain BCG-1 (Russia). Genome Announcements. 2016, 4: 1-2.

20. Stefanova T. Quality control and safety assessment of BCG vaccines in the post-genomic era. Biotechnology Biotechnological Equipment. 2014, 28: 387-391.

21. Supply R., Allix C., Lesjean S. et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 12: 4498-4510.

22. WHO. Informal Consultation on Standardization and Evaluation of BCG Vaccines, 22-23 September 2009, WHO, Geneva, Switzerland. p.1-25

23. WHO. Information Sheet observed rate of vaccine reactions Bacille Calmette -Guerin (BCG) vaccine. Global Vaccine Safety, Immunization, Valines and Biologicals. Geneva. April 2012. p. 1-5.

24. WHO. Report WHO Consultation on the characterisation of BCG vaccines. Geneva, Switzerland, 8-9 December, 2004. p. 1-8.