Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 15-22

ЦИТОКИНОВЫЙ ПРОФИЛЬ ДЕНДРИТНЫХ КЛЕТОК МЫШЕЙ ПОД ВОЗДЕЙСТВИЕМ БЕЛКОВ PSEUDOMONAS AERUGINOSA OprF И aTox

Ахматова Н. К., Калиниченко Е. О., Макаренкова И. Д., Ахматова Э. А., Тухватулин А. И., Логунов Д. Ю., Михайлова Н. А.

https://doi.org/10.36233/0372-9311-2018-2-15-22

Аннотация

Цель. Изучение влияния белков OprF и aTox Pseudomonas aeruginosa на цитокиновый профиль дендритных клеток мышей. Материалы и методы. Дендритные клетки (ДК) получали из клеток костного мозга мышей при культивировании с 20 нг/мл рекомбинантных GM-CSF и IL-4 (Biosource, США). В качестве индуктора созревания использовали белки OprF и aTox P aeruginosa (НИИВС им. И.И.Мечникова). Уровень цитокинов определяли в супернатантах ДК с использованием набора Bio-Plex Pro™ Mouse Cytokine 23-plex Assay (BioRad, США). Результаты. Оценка профиля и уровня цитокинов, продуцируемых дендритными клетками мышей, демонстрирует высокую активность зрелых ДК. Под воздействием рекомбинантных белков OprF+aTox как несорбированных, так и сорбированных на гидроксиде алюминия, ДК синтезировали большое количество Th-1 цитокинов: IL-1a, IL-1p, IL-6, TNF-a, Th-2 цитокинов: IL-4, IL-10, IL-13, регуляторных цитокинов: IL-12, IFN-y, IL-17A и хемокинов: KC(CXCL1), MIP-1a (CCL3), MIP-1e(CCL4), RANTES (CCL5). В наших исследованиях продемонстрирована возможность получения культуры клеток, состоящей как из зрелых ДК, так и макрофагов из костномозговых предшественников мышей при цитокиновой стимуляции с использованием в качестве индуктора созревания ДК комплекса антигенов P. aeruginosa. Заключение. Кандидатная вакцина против синегнойной палочки на основе ее рекомбинантных белков OprF и aTox индуцирует продукцию хемокинов и Th-1, Th-2, Th-17 цитокинов дендритными клетками у мышей.
Список литературы

1. Пальцев М.А. Введение в молекулярную медицину. М., Медицина, 2004.

2. Семенов Б.Ф., Ахматова Н.К., Киселевский М.В. и др. Клеточные и молекулярные события при введении поликомпонентной бактериальной вакцины и заражении S. typhimurium. Молек. мед. 2005, 4: 48-54.

3. Aliyari S.Z., Ebrahimi K.A., Mehdipour A. et al. Regulation and roles of CD26/DPPIV in hematopoiesis and diseases. Biomed. Pharmacother. 2017 Apr 24; 91: 88-94. doi: 10.1016/j. biopha.

4. Chang S.H., Mirabolfathinejad S.G., Katta H. et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Nat. Acad. Sci. USA. 2014, 111 (15): 5664-5669. doi:10.1073/ pnas.1319051111.

5. Chen K., Kolls J.K. T cell-mediated host immune defenses in the lung. Ann. Rev. Immunol. 2013, 31: 605-633. doi:10.1146/annurev-immunol-032712-100019.

6. Chen K., McAleer J.P., Lin Y. et al. Th17 cells mediate clade-specific, serotype-independent mucosal immunit. Immunity. 2011, 35 (6): 997-1009. doi:10.1016/j.immuni.2011.10.018.

7. Crowe C.R., Chen K., Pociask D.A. et al. Critical role of IL-17RA in immunopathology of influenza infection. J. Immunology. 2009, 183 (8): 5301-5310. doi:10.4049/jimmu-nol.0900995.

8. Cua D.J., Tato C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Reviews. Immunology. 2010, 10 (7): 479-489.

9. Dorner B.G., Scheffold A., Rolph M.S. et al. MIP-1, RANTES, and ATAC lymphotactin function together with IFN-as type 1 cytokines. PNAS. 2002, 99 (9): 6181-6186.

10. Jakovcevski I., Filipovic R., Mo Z. et al. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat. 2009, 3: 5. doi: 10.3389/neuro.

11. Juszczak M., Glabinski A. Th17 cells in the pathogenesis of multiple sclerosis. Postepy Hig. Med. Dosw. (Online). 2009 Oct 23; 63: 492-501.

12. Ketko A.K., Lin C., Moore B.B. et al. Surfactant protein A binds flagellin enhancing phagocytosis and IL-1P production. PLoS One. 2013, 8 (12): e82680. doi: 10.1371/journal. pone.0082680.

13. Khan R., Basha A., Goverdhanam R. et al. Attenuation ofTNF-a secretion by L-proline-based cyclic dipeptides produced by culture broth of Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 2015, 25 (24): 5756-5761. doi: 10.1016/j.bmcl.2015.10.075.

14. Kumagai J., Hirahara K., Nakayama T. Pathogenic Th cell subsets in chronic inflammatory diseases. Nihon Rinsho Meneki Gakkai Kaishi. 2016, 39 (2):114-123. doi: 10.2177/js-ci.39.114.

15. Lu Y.J., Gross J., Bogaert D. et al. Interleukin-17A mediates acquired immunity to pneumococcal colonizatio. PLoS Pathogens. 2008, 4 (9): e1000159. doi:10.1371/journal. ppat.100015.

16. Moutsopoulos N.M., Zerbe C.S., Wild T. et al. Interleukin-12 and Interleukin-23 blockade in leukocyte adhesion deficiency type 1. New Engl. J. Med. 2017 Mar 23; 376 (12):1141-1146. doi: 10.1056/NEJMoa1612197.

17. Planaguma A., Domenech T., Pont M. et al. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm. Pharmacol. Ther. 2015, 34:37-45. doi: 10.1016/j.pupt.2015.08.002.

18. Shekhar S., Peng Y., Wang S. et al. CD103+ lung dendritic cells (LDCs) induce stronger Th1/ Th17 immunity to a bacterial lung infection than CD11bhi LDCs. Cell Mol. Immunol. 2017 Feb 13. doi: 10.1038/cmi.2016.68.

19. Silva R.L., Lopes A.H., Guimaraes R.M. et al. CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol. Dis. 2017 Jun 3; 105: 109-116. doi: 10.1016/j.nbd.2017.06.001.

20. Varelias A., Ormerod K.L., Bunting M.D. et al. Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome. Blood. 2017, 129 (15): 2172-2185. doi: 10.1182/ blood-2016-08-732628.

21. Wang Y., Fan K.T., Li J.M. et al. The regulation and activity of interleukin-12. Front. Biosci (Schol Ed). 2012 Jan 1, 4: 888-899.

22. Zlotnik A., Yoshie O. The chemokine superfamily revisited. Immunity. 2012 May 25; 36 (5): 705-716. doi: 10.1016/j.immuni.2012.05.008.

23. Zlotnik A., Yoshie O., Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006, 7: 243.

Journal of microbiology, epidemiology and immunobiology. 2018; : 15-22

THE CYTOKINE PROFILE OF MICE DENDRITIC CELLS UNDER THE INFLUENCE OF OprF AND aTox PROTEINS OF PSEUDOMONAS AERUGINOSA

Akhmatova N. K., Kalinichenko E. O., Makarenkova I. D., Akhmatova E. A., Tukhvatulin A. I., Logunov D. Yu., Mikhailova N. A.

https://doi.org/10.36233/0372-9311-2018-2-15-22

Abstract

Aim. To study the effect of OprF and aTox proteins of Pseudomonas aeruginosa on the cytokine profile of mice dendritic cells. Materials and methods. Dendritic cells (DC) were obtained from bone marrow cells of BALB/c mice when cultured with 20 ng/ml of recombinant GM-CSF and IL-4 (Biosource, USA). OprF and aTox of P. aeruginosa were used as the inducer of maturation of DC. The level of cytokines was determined in supernatants of DC using the Bio-Plex Pro™ Mouse Cytokine 23-plex Assay (BioRad, USA). Results. Evaluation of the profile and level of cytokines produced by dendritic cells of mice demonstrates the high activity of mature DC. Under the influence of recombinant proteins OprF+aTox, both large amounts of Th-1 cytokines were synthesized: IL-1a, IL-1P, IL-6, TNF-a, Th-2 cytokines: IL- 4, IL-10, IL-13, regulatory cytokines: IL-12, IFN-y, IL-17A and chemokines: KC (CXCL1), MIP-1a (CCL3), MIP-1e (CCL4), RANTES (CCL5). In our studies, we demonstrated the possibility of obtaining mature dendritic cells from the bone marrow of mice under the influence of a complex of P. aeruginosa antigens. Conclusion. The candidate Pseudomonas aeruginosa vaccine based on its recombinant proteins OprF and aTox induces the production of chemokines and Th-1, Th-2, Th-17 cytokines by mice dendritic cells.
References

1. Pal'tsev M.A. Vvedenie v molekulyarnuyu meditsinu. M., Meditsina, 2004.

2. Semenov B.F., Akhmatova N.K., Kiselevskii M.V. i dr. Kletochnye i molekulyarnye sobytiya pri vvedenii polikomponentnoi bakterial'noi vaktsiny i zarazhenii S. typhimurium. Molek. med. 2005, 4: 48-54.

3. Aliyari S.Z., Ebrahimi K.A., Mehdipour A. et al. Regulation and roles of CD26/DPPIV in hematopoiesis and diseases. Biomed. Pharmacother. 2017 Apr 24; 91: 88-94. doi: 10.1016/j. biopha.

4. Chang S.H., Mirabolfathinejad S.G., Katta H. et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Nat. Acad. Sci. USA. 2014, 111 (15): 5664-5669. doi:10.1073/ pnas.1319051111.

5. Chen K., Kolls J.K. T cell-mediated host immune defenses in the lung. Ann. Rev. Immunol. 2013, 31: 605-633. doi:10.1146/annurev-immunol-032712-100019.

6. Chen K., McAleer J.P., Lin Y. et al. Th17 cells mediate clade-specific, serotype-independent mucosal immunit. Immunity. 2011, 35 (6): 997-1009. doi:10.1016/j.immuni.2011.10.018.

7. Crowe C.R., Chen K., Pociask D.A. et al. Critical role of IL-17RA in immunopathology of influenza infection. J. Immunology. 2009, 183 (8): 5301-5310. doi:10.4049/jimmu-nol.0900995.

8. Cua D.J., Tato C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Reviews. Immunology. 2010, 10 (7): 479-489.

9. Dorner B.G., Scheffold A., Rolph M.S. et al. MIP-1, RANTES, and ATAC lymphotactin function together with IFN-as type 1 cytokines. PNAS. 2002, 99 (9): 6181-6186.

10. Jakovcevski I., Filipovic R., Mo Z. et al. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat. 2009, 3: 5. doi: 10.3389/neuro.

11. Juszczak M., Glabinski A. Th17 cells in the pathogenesis of multiple sclerosis. Postepy Hig. Med. Dosw. (Online). 2009 Oct 23; 63: 492-501.

12. Ketko A.K., Lin C., Moore B.B. et al. Surfactant protein A binds flagellin enhancing phagocytosis and IL-1P production. PLoS One. 2013, 8 (12): e82680. doi: 10.1371/journal. pone.0082680.

13. Khan R., Basha A., Goverdhanam R. et al. Attenuation ofTNF-a secretion by L-proline-based cyclic dipeptides produced by culture broth of Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 2015, 25 (24): 5756-5761. doi: 10.1016/j.bmcl.2015.10.075.

14. Kumagai J., Hirahara K., Nakayama T. Pathogenic Th cell subsets in chronic inflammatory diseases. Nihon Rinsho Meneki Gakkai Kaishi. 2016, 39 (2):114-123. doi: 10.2177/js-ci.39.114.

15. Lu Y.J., Gross J., Bogaert D. et al. Interleukin-17A mediates acquired immunity to pneumococcal colonizatio. PLoS Pathogens. 2008, 4 (9): e1000159. doi:10.1371/journal. ppat.100015.

16. Moutsopoulos N.M., Zerbe C.S., Wild T. et al. Interleukin-12 and Interleukin-23 blockade in leukocyte adhesion deficiency type 1. New Engl. J. Med. 2017 Mar 23; 376 (12):1141-1146. doi: 10.1056/NEJMoa1612197.

17. Planaguma A., Domenech T., Pont M. et al. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm. Pharmacol. Ther. 2015, 34:37-45. doi: 10.1016/j.pupt.2015.08.002.

18. Shekhar S., Peng Y., Wang S. et al. CD103+ lung dendritic cells (LDCs) induce stronger Th1/ Th17 immunity to a bacterial lung infection than CD11bhi LDCs. Cell Mol. Immunol. 2017 Feb 13. doi: 10.1038/cmi.2016.68.

19. Silva R.L., Lopes A.H., Guimaraes R.M. et al. CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol. Dis. 2017 Jun 3; 105: 109-116. doi: 10.1016/j.nbd.2017.06.001.

20. Varelias A., Ormerod K.L., Bunting M.D. et al. Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome. Blood. 2017, 129 (15): 2172-2185. doi: 10.1182/ blood-2016-08-732628.

21. Wang Y., Fan K.T., Li J.M. et al. The regulation and activity of interleukin-12. Front. Biosci (Schol Ed). 2012 Jan 1, 4: 888-899.

22. Zlotnik A., Yoshie O. The chemokine superfamily revisited. Immunity. 2012 May 25; 36 (5): 705-716. doi: 10.1016/j.immuni.2012.05.008.

23. Zlotnik A., Yoshie O., Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006, 7: 243.