Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 465-477

Молекулярно-генетическая характеристика штаммов Vibrio cholerae nonO1/nonO139, выделенных от больных отитами на территории Российской Федерации

Монахова Е. В., Водопьянов А. С., Кругликов В. Д., Селянская Н. А., Писанов Р. В., Носков А. К.

https://doi.org/10.36233/0372-9311-215

Аннотация

Введение. В 2017–2020 гг. в России впервые за много лет от больных отитами были выделены штаммы Vibrio cholerae nonO1/nonO139 (НАГ-вибрионов).

Цель работы — биоинформационный анализ полных геномов (WGSs) и отдельных генов штаммов НАГ-вибрионов — возбудителей отитов, выделенных в России.

Материалы и методы. Анализ WGSs 8 клинических изолятов НАГ-вибрионов, полученных на платформе «MiSeq Illumina», проводили с использованием программ «BioEdit», «BLASTN», «BLASTP», «Vector NTI»; антибиотикоустойчивость определяли согласно МУК 4.2.2495-09.

Результаты. Штаммы различались по содержанию SNP, наборам детерминант факторов патогенности/ персистенции и их аллелям. Все были лишены профагов CTX, preCTX, RS1, острова патогенности VPI, гена термостабильного токсина, мобильных элементов, связанных с антибиотикорезистентностью, острова пандемичности VSP-I; 2 штамма содержали остров VSP-II. В разных сочетаниях выявлены гены ряда протеаз, cholix-токсина, кластер системы секреции 3-го типа (T3SS), дополнительные кластеры T6SS. Продукты изменённых генов сохраняли либо утрачивали характерные активные домены. В цитотоксине MARTX 6 штаммов отсутствовал ключевой домен ACD, у 4 выявлен новый домен rtxA-like. Кластеры генов биоплёнкообразования варьировали по стуктуре. Присутствие генов антибиотикорезистентности не всегда коррелировало с антибиотикограммами. Все штаммы были чувствительны к большинству антибиотиков, но некоторые проявляли резистентность к 1–4 препаратам.

Выводы. Все изученные штаммы — возбудители отитов, несмотря на выявленные различия, обладают достаточными наборами детерминант, ответственных за реализацию патогенетического и персистентного потенциала. В связи с несовпадением генотипических и фенотипических показателей антибиотикорезистентности при выборе препаратов для этиотропной терапии НАГ-инфекций следует полагаться в основном на фенотип. Выявление на территории России больных отитами, вызванными НАГ-вибрионами, указывает на целесообразность включения тестов на их присутствие в схему бактериологического анализа при внекишечных инфекциях и в случаях их выделения — оперативного определения чувствительности к антибиотикам.

Список литературы

1. Монахова Е.В., Архангельская И.В. Холерные вибрионы неО1/неО139 серогрупп в этиологии острых кишечных инфекций: современная ситуация в России и в мире. Проблемы особо опасных инфекций. 2016; (2): 14–23. https://doi.org/10.21055/0370-1069-2016-2-14-23

2. Schirmeister F., Dieckmann R., Bechlars S., Bier N., Faruque S.M., Strauch E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33(5): 767– 78. https://doi.org/10.1007/s10096-013-2011-9.

3. van Bonn S.M., Schraven S.P., Schuldt T., Heimesaat M.M., Mlynski R., Warnke P.C. Chronic otitis media following infection by non-O1/non-O139 Vibrio cholerae: a case report and review of the literature. Eur. J. Microbiol. Immunol. (Bp). 2020; 10(3): 186–91. https://doi.org/10.1556/1886.2020.0001310.1556/1886.202000013

4. Kechker P., Senderovich Y., Ken-Dror S., Laviad-Shitrit S., Arakawa E., Halpern M. Otitis media caused by V. cholerae O100: a case report and review of the literature. Front. Microbiol. 2017; 8: 1619. https://doi.org/10.3389/fmicb.2017.01619

5. Leroy A.G., Lerailler F., Quilici M.L., Bourdon S. Vibrio cholerae non-O1/non-O139 otitis in metropolitan France. Med. Mal. Infect. 2019; 49(5): 359–61. https://doi.org/10.1016/j.medmal.2019.03.003 (in French)

6. Díaz-Menéndez M., Alguacil-Guillén M., Bloise I., García-Pallarés M., Mingorance J. A case of otitis externa caused by non01/non-0139 Vibrio cholerae after exposure at a Mediterranean bathing site. J. Rev. Esp. Quimioter. 2018; 31(3): 295–7.

7. Vezzulli L., Grande C., Reid P.C., Hélaouët P., Edwards M., Höfle M.G., et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl Acad. Sci. USA. 2016; 113(34): E5062–71. https://doi.org/10.1073/pnas.1609157113

8. Lepuschitz S., Baron S., Larvor E., Granier S.A., Pretzer C., Mach R.L., et al. Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian lake frequently associated with cases of human infection. Front. Microbiol. 2019; 10: 2600. https://doi.org/10.3389/fmicb.2019.02600

9. Титова С.В., Монахова Е.В., Алексеева Л.П., Писанов Р.В. Молекулярно-генетические основы биопленкообразования как составляющей персистенции Vibrio cholerae в водоемах Российской Федерации. Экологическая генетика. 2018; 16(4): 23–32. https://doi.org/10.17816/ecogen16423-32

10. Водопьянов А.С., Писанов Р.В., Водопьянов С.О., Мишанькин Б.Н., Олейников И.П., Кругликов В.Д. и др. Молекулярная эпидемиология Vibrio cholerae — разработка алгоритма анализа данных полногеномного секвенирования. Эпидемиология и инфекционные болезни. 2016; 21(3): 146–52. https://doi.org/10.18821/1560-9529-2016-21-3-146-152

11. Rule C.S., Park Y.J., Delarosa J.R., Turley S., Hol W.G.J., McColm S., et al. Suppressor mutations in type II secretion mutants of Vibrio cholerae: inactivation of the VesC protease. mSphere. 2020; 5(6): e01125-20. https://doi.org/10.1128/mSphere.01125-20

12. Crisan C.V., Hammer B.K. The Vibrio cholerae type VI secretion system: toxins, regulators and consequences. Environ. Microbiol. 2020; 22(10): 4112–22. https://doi.org/10.1111/1462-2920.14976

13. Монахова Е.В., Архангельская И.В., Титова С.В., Писанов Р.В. MSHA-подобные пили нетоксигенных штаммов холерных вибрионов. Проблемы особо опасных инфекций. 2019; (3): 75–80. https://doi.org/10.21055/0370-1069-2019-3-75-80

14. Awasthi S.P., Asakura M., Chowdury N., Neogi S.B., Hinenoya A., Golbar H.M., et al. Novel cholix toxin variants, ADPribosilating toxins in Vibrio cholerae nonO1/nonO139 strains, and their pathogenicity. Infect. Immun. 2013; 81(2): 531–41. https://doi.org/10.1128/IAI.00982-12

15. Lugo M.R., Merrill A.R. The father, son and cholix toxin: the third member of the DT group mono-ADP-ribosyltransferase toxin family. Toxins (Basel). 2015; 7(8): 2757–72. https://doi.org/10.3390/toxins7082757

16. Монахова Е.В., Архангельская И.В., Писанов Р.В., Титова С.В. Особенности первичной структуры цитотоксина MARTX нетоксигенных штаммов Vibrio cholerae разных серогрупп. Проблемы особо опасных инфекций. 2018; (3): 73–7. https://doi.org/10.21055/0370-1069-2018-3-73-77

17. Vaitkevicius K., Rompikuntal P.K., Lindmark B., Vaitkevicius R., Song T., Wai S.N. The metalloprotease PrtV from Vibrio cholerae. FEBS J. 2008; 275(12): 3167–77. https://doi.org/10.1111/j.1742-4658.2008.06470.x

18. Park B.R., Zielke R.A., Wierzbicki I.H., Mitchell K.C., Withey J.H., Sikora A.E. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J. Bacteriol. 2015; 197(6): 1051–64. https://doi.org/10.1128/JB.02329-14

19. Syngkon A., Elluri S., Koley H., Rompikuntal P.K., Saha D.R., Chakrabarti M.K., et al. Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One. 2010; 5(9): e13122. https://doi.org/10.1371/journal.pone.0013122

20. Hatzios S.K., Abel S., Martell J., Hubbard T., Sasabe J., Munera D., et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol. 2016; 12(4): 268– 74. https://doi.org/10.1038/nchembio.2025

21. Gadwal S., Johnson T.L., Remmer H., Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog. 2018; 14(10): e1007341. https://doi.org/10.1371/journal.ppat.1007341

22. Монахова Е.В., Федоренко Г.М., Мазрухо А.Б., Писанов Р.В., Кругликов В.Д., Маркина О.В. и др. Изучение биологического действия цитотонического фактора Cef холерных вибрионов на моделях in vitro и in vivo. Проблемы особо опасных инфекций. 2012; (1): 62–5.

23. Blokesch M. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. cholerae. Bioessays. 2015; 37(11): 1163–8. https://doi.org/10.1002/bies.201500101

24. Pukatzki S., Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front. Microbiol. 2013; 4: 384. https://doi.org/10.3389/fmicb.2013.00384

25. Dong T.G., Ho B.T., Yoder‐Himes D.R., Mekalanos J.J. Identification of T6SS‐dependent effector and immunity proteins by Tn‐seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA. 2013; 110(7): 2623–8. https://doi.org/10.1073/pnas.1222783110

26. Shin O.S., Tam V.C., Suzuki M., Ritchie J.M., Bronson R.T., Waldor M.K., et al. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio. 2011; 2(3): e00106-11. https://doi.org/10.1128/mBio.00106-11

27. Dzeijman M., Serruto D., Tam V.C., Sturtevant D., Diraphat P., Faruque S.M., et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl Acad. Sci. USA. 2005; 102(90): 3465–70. https://doi.org/10.1073/pnas.0409918102

28. Shi L., Fujihara K., Sato T., Ito H., Garg P., Chakrabarty R., et al. Distribution and characterization of integrons in various serogroups of Vibrio cholerae strains isolated from diarrhoeal patients between 1992 and 2000 in Kolkata, India. J. Med. Microbiol. 2006; 55(Pt. 5): 575–83. https://doi.org/10.1099/jmm.0.46339-0

29. Verma J., Bag S., Saha B., Kumar P., Ghosh T.S., Dayal M., et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc. Natl Acad. Sci. USA. 2019; 116(13): 6226–31. https://doi.org/10.1073/pnas.1900141116

30. Das B., Verma J., Kumar P., Ghosh A., Ramamurthy T. Antibiotic resistance in Vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Vaccine. 2020; 38(Suppl. 1): A83–92. https://doi.org/10.1016/j.vaccine.2019.06.031

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 465-477

Molecular genetic characteristics of Vibrio cholerae nonO1/nonO139 strains isolated on the territory of Russian Federation from patients with otitis

Monakhova E. V., Vodop'yanov A. S., Kruglikov V. D., Selyanskaya N. A., Pisanov R. V., Noskov A. K.

https://doi.org/10.36233/0372-9311-215

Abstract

Introduction. In 2017–2020 for the first time in many years strains of Vibrio cholerae nonO1/nonO139 (NAGs) were isolated in Russia from patients with otitis.

Aim — bioinformatic analysis of whole genome sequences (WGSs) and sequences of individual genes of NAG strains - causative agents of otitis isolated in Russia.

Materials and methods. Analysis of WGSs of eight NAG clinical isolates obtained on the MiSeq Illumina platform was carried out using BioEdit, BLASTN, BLASTP, Vector NTI programs; antibiotic resistance was determined according to MUK 4.2.2495-09.

Results. The strains differed in SNP content, sets of determinants of pathogenicity/persistence factors and their alleles. All lacked CTX, preCTX, RS1 prophages, VPI pathogenicity island, thermostable toxin gene, mobile elements associated with antibiotic resistance, pandemicity island VSP-I; two strains contained VSP-II island. Genes of a number of proteases, cholix toxin, type 3 secretion system (T3SS) cluster and additional T6SS clusters formed different combinations. Products of the altered genes retained or lost their characteristic active domains. In the cytotoxin MARTX of 6 strains, the key ACD domain was absent; in 4 strains a new rtxA-like domain was revealed. Biofilm gene clusters varied in their structure. The presence of genes for antibiotic resistance did not always correlate with antibioticograms. All strains were susceptible to most antibiotics, but some showed resistance to 1–4 drugs.

Conclusion. All the studied strains — causative agents of otitis, in spite of revealed differences, have sufficient sets of determinants responsible for realization of pathogenic and persistent potential. Due to discrepancy between the genotypic and phenotypic characteristics of antibiotic resistance, one should rely mainly on the phenotype when choosing drugs for the etiotropic therapy of NAG infections. Emergence of patients with otitis caused by NAG-vibrios in Russia indicates the advisability of the inclusion of tests for their identification in the scheme of bacteriological analysis for extraintestinal infections and, in cases of their isolation, for prompt determination of sensitivity to antibiotics. 

References

1. Monakhova E.V., Arkhangel'skaya I.V. Kholernye vibriony neO1/neO139 serogrupp v etiologii ostrykh kishechnykh infektsii: sovremennaya situatsiya v Rossii i v mire. Problemy osobo opasnykh infektsii. 2016; (2): 14–23. https://doi.org/10.21055/0370-1069-2016-2-14-23

2. Schirmeister F., Dieckmann R., Bechlars S., Bier N., Faruque S.M., Strauch E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33(5): 767– 78. https://doi.org/10.1007/s10096-013-2011-9.

3. van Bonn S.M., Schraven S.P., Schuldt T., Heimesaat M.M., Mlynski R., Warnke P.C. Chronic otitis media following infection by non-O1/non-O139 Vibrio cholerae: a case report and review of the literature. Eur. J. Microbiol. Immunol. (Bp). 2020; 10(3): 186–91. https://doi.org/10.1556/1886.2020.0001310.1556/1886.202000013

4. Kechker P., Senderovich Y., Ken-Dror S., Laviad-Shitrit S., Arakawa E., Halpern M. Otitis media caused by V. cholerae O100: a case report and review of the literature. Front. Microbiol. 2017; 8: 1619. https://doi.org/10.3389/fmicb.2017.01619

5. Leroy A.G., Lerailler F., Quilici M.L., Bourdon S. Vibrio cholerae non-O1/non-O139 otitis in metropolitan France. Med. Mal. Infect. 2019; 49(5): 359–61. https://doi.org/10.1016/j.medmal.2019.03.003 (in French)

6. Díaz-Menéndez M., Alguacil-Guillén M., Bloise I., García-Pallarés M., Mingorance J. A case of otitis externa caused by non01/non-0139 Vibrio cholerae after exposure at a Mediterranean bathing site. J. Rev. Esp. Quimioter. 2018; 31(3): 295–7.

7. Vezzulli L., Grande C., Reid P.C., Hélaouët P., Edwards M., Höfle M.G., et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl Acad. Sci. USA. 2016; 113(34): E5062–71. https://doi.org/10.1073/pnas.1609157113

8. Lepuschitz S., Baron S., Larvor E., Granier S.A., Pretzer C., Mach R.L., et al. Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian lake frequently associated with cases of human infection. Front. Microbiol. 2019; 10: 2600. https://doi.org/10.3389/fmicb.2019.02600

9. Titova S.V., Monakhova E.V., Alekseeva L.P., Pisanov R.V. Molekulyarno-geneticheskie osnovy bioplenkoobrazovaniya kak sostavlyayushchei persistentsii Vibrio cholerae v vodoemakh Rossiiskoi Federatsii. Ekologicheskaya genetika. 2018; 16(4): 23–32. https://doi.org/10.17816/ecogen16423-32

10. Vodop'yanov A.S., Pisanov R.V., Vodop'yanov S.O., Mishan'kin B.N., Oleinikov I.P., Kruglikov V.D. i dr. Molekulyarnaya epidemiologiya Vibrio cholerae — razrabotka algoritma analiza dannykh polnogenomnogo sekvenirovaniya. Epidemiologiya i infektsionnye bolezni. 2016; 21(3): 146–52. https://doi.org/10.18821/1560-9529-2016-21-3-146-152

11. Rule C.S., Park Y.J., Delarosa J.R., Turley S., Hol W.G.J., McColm S., et al. Suppressor mutations in type II secretion mutants of Vibrio cholerae: inactivation of the VesC protease. mSphere. 2020; 5(6): e01125-20. https://doi.org/10.1128/mSphere.01125-20

12. Crisan C.V., Hammer B.K. The Vibrio cholerae type VI secretion system: toxins, regulators and consequences. Environ. Microbiol. 2020; 22(10): 4112–22. https://doi.org/10.1111/1462-2920.14976

13. Monakhova E.V., Arkhangel'skaya I.V., Titova S.V., Pisanov R.V. MSHA-podobnye pili netoksigennykh shtammov kholernykh vibrionov. Problemy osobo opasnykh infektsii. 2019; (3): 75–80. https://doi.org/10.21055/0370-1069-2019-3-75-80

14. Awasthi S.P., Asakura M., Chowdury N., Neogi S.B., Hinenoya A., Golbar H.M., et al. Novel cholix toxin variants, ADPribosilating toxins in Vibrio cholerae nonO1/nonO139 strains, and their pathogenicity. Infect. Immun. 2013; 81(2): 531–41. https://doi.org/10.1128/IAI.00982-12

15. Lugo M.R., Merrill A.R. The father, son and cholix toxin: the third member of the DT group mono-ADP-ribosyltransferase toxin family. Toxins (Basel). 2015; 7(8): 2757–72. https://doi.org/10.3390/toxins7082757

16. Monakhova E.V., Arkhangel'skaya I.V., Pisanov R.V., Titova S.V. Osobennosti pervichnoi struktury tsitotoksina MARTX netoksigennykh shtammov Vibrio cholerae raznykh serogrupp. Problemy osobo opasnykh infektsii. 2018; (3): 73–7. https://doi.org/10.21055/0370-1069-2018-3-73-77

17. Vaitkevicius K., Rompikuntal P.K., Lindmark B., Vaitkevicius R., Song T., Wai S.N. The metalloprotease PrtV from Vibrio cholerae. FEBS J. 2008; 275(12): 3167–77. https://doi.org/10.1111/j.1742-4658.2008.06470.x

18. Park B.R., Zielke R.A., Wierzbicki I.H., Mitchell K.C., Withey J.H., Sikora A.E. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J. Bacteriol. 2015; 197(6): 1051–64. https://doi.org/10.1128/JB.02329-14

19. Syngkon A., Elluri S., Koley H., Rompikuntal P.K., Saha D.R., Chakrabarti M.K., et al. Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One. 2010; 5(9): e13122. https://doi.org/10.1371/journal.pone.0013122

20. Hatzios S.K., Abel S., Martell J., Hubbard T., Sasabe J., Munera D., et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol. 2016; 12(4): 268– 74. https://doi.org/10.1038/nchembio.2025

21. Gadwal S., Johnson T.L., Remmer H., Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog. 2018; 14(10): e1007341. https://doi.org/10.1371/journal.ppat.1007341

22. Monakhova E.V., Fedorenko G.M., Mazrukho A.B., Pisanov R.V., Kruglikov V.D., Markina O.V. i dr. Izuchenie biologicheskogo deistviya tsitotonicheskogo faktora Cef kholernykh vibrionov na modelyakh in vitro i in vivo. Problemy osobo opasnykh infektsii. 2012; (1): 62–5.

23. Blokesch M. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. cholerae. Bioessays. 2015; 37(11): 1163–8. https://doi.org/10.1002/bies.201500101

24. Pukatzki S., Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front. Microbiol. 2013; 4: 384. https://doi.org/10.3389/fmicb.2013.00384

25. Dong T.G., Ho B.T., Yoder‐Himes D.R., Mekalanos J.J. Identification of T6SS‐dependent effector and immunity proteins by Tn‐seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA. 2013; 110(7): 2623–8. https://doi.org/10.1073/pnas.1222783110

26. Shin O.S., Tam V.C., Suzuki M., Ritchie J.M., Bronson R.T., Waldor M.K., et al. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio. 2011; 2(3): e00106-11. https://doi.org/10.1128/mBio.00106-11

27. Dzeijman M., Serruto D., Tam V.C., Sturtevant D., Diraphat P., Faruque S.M., et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl Acad. Sci. USA. 2005; 102(90): 3465–70. https://doi.org/10.1073/pnas.0409918102

28. Shi L., Fujihara K., Sato T., Ito H., Garg P., Chakrabarty R., et al. Distribution and characterization of integrons in various serogroups of Vibrio cholerae strains isolated from diarrhoeal patients between 1992 and 2000 in Kolkata, India. J. Med. Microbiol. 2006; 55(Pt. 5): 575–83. https://doi.org/10.1099/jmm.0.46339-0

29. Verma J., Bag S., Saha B., Kumar P., Ghosh T.S., Dayal M., et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc. Natl Acad. Sci. USA. 2019; 116(13): 6226–31. https://doi.org/10.1073/pnas.1900141116

30. Das B., Verma J., Kumar P., Ghosh A., Ramamurthy T. Antibiotic resistance in Vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Vaccine. 2020; 38(Suppl. 1): A83–92. https://doi.org/10.1016/j.vaccine.2019.06.031