Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 436-444

Оценка наличия генов, связанных с вирулентностью, у изолятов Klebsiella pneumoniae, выделенных из микробиоты больных и «практически» здоровых людей, с применением метода мультиплексной полимеразной цепной реакции

Пай Г. В., Ракитина Д. В., Сухина М. А., Юдин С. М., Макаров В. В., Мания Т. Р., Загайнова А. В.

https://doi.org/10.36233/0372-9311-237

Аннотация

Введение. Klebsiella pneumoniae в микробиоте человека может быть представлена как комменсальными, так и высокопатогенными штаммами, например, с гипермукоидным фенотипом. Данный фенотип характеризуется определёнными генетическими детерминантами, позволяющими выявить патогенный потенциал изолятов молекулярно-генетическим методом ПЦР.

Цели и задачи: сравнить патогенный потенциал изолятов K. pneumoniae, полученных от «практически» здоровых лиц, пациентов с воспалительными заболеваниями кишечника (ВЗК), и штаммов, выделенных из биологического материала с внекишечными инфекциями (ВКИ), посредством детекции генов, связанных с вирулентностью.

Материалы и методы. Исследование проводили с применением набора олигонуклеотидов для мультиплексного анализа — 8 генов, предположительно ассоциированных с вирулентностью, с функцией захвата железа (ybtS, kfu, iutA), адгезии и инвазии (mrkD), гипермукоидного фенотипа и вирулентных штаммов (mrkD, magA, rmpA, k2) и метаболизма аллантоина — продукта расщепления пуринов и мочевой кислоты (allS). Анализу подвергли 69 изолятов, выделенных из микробиоты кишечника пациентов с ВЗК, 68 изолятов из кишечной микробиоты «практически» здоровых людей и 25 мультирезистентных изолятов, выделенных из крови, мочи, операционных ран, бронхоальвеолярного лаважа пациентов с ВКИ.

Результаты. Установлено, что 4 из 8 исследованных генов были ассоциированы с различными болезненными состояниями, диагностируемыми у пациентов. Ген сидерофора ybtS достоверно чаще встречался у изолятов, выделенных как у больных с ВЗК (р = 0,024), так и с мультирезистентными ВКИ (p < 0,001). У изолятов ВЗК также достоверно чаще представлен ген гипермукоидного фенотипа rmpA (р = 0,038). У мультирезистентных внекишечных изолятов наиболее достоверно представлены адгезин mrkD (р ≤ 0,001) и allS (р = 0,032).

Заключение. Изоляты K. pneumoniae от пациентов с ВКИ имели наибольший патогенный потенциал, а изоляты из кала «практически» здоровых лиц — наименьший. Наиболее часто встречающиеся гены вирулентности связаны с адгезией и гипермукоидным фенотипом.

Список литературы

1. Bagley S.T. Habitat association of Klebsiella species. Infect. Control. 1985; 6(2): 52–8. https://doi.org/10.1017/S0195941700062603

2. Jarvis W.R., Munn V.P., Highsmith A.K., Culver D.H., Hughes J.M. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect. Control. 1985; 6(2): 68–74. https://doi.org/10.1017/s0195941700062639

3. Marchaim D., Chopra T., Pogue J.M., Perez F., Hujer A.M., Rudin S., et al. Outbreak of colistin‐resistant, carbapenem‐ resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob. Agents Chemother. 2011; 55(2): 593–9. https://doi.org/10.1128/AAC.01020-10

4. Komisarova E.V., Volozhantsev N.V. Hypervirulent Klebsiella pneumonia: a new infectious threat. 2019; 17(3): 81–9. https://doi.org/10.20953/1729-9225-2019-3-81-89

5. Khaertynov K.S., Anokhin V.A., Davidyuk Y.N., Nicolaeva I.V., Khalioullina S.V., Semyenova D.R., et al. Case of meningitis in a neonate caused by an extended-spectrum-beta-lactamaseproducing strain of hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2017; 8: 1576. https://doi.org/10.3389/fmicb.2017.01576

6. Frazee B.W., Hansen S., Lambert L. Invasive infection with hypermucoviscous Klebsiella pneumoniae: multiple cases presenting to a single emergency department in the United States. Ann. Emerg. Med. 2009; 53(5): 639‐42. https://doi.org/10.1016/j.annemergmed.2008.11.007

7. McCabe R., Lambert L., Frazee B. Invasive Klebsiella pneumoniae infections, California, USA. Emerg. Infect. Dis. 2010; 16(9): 1490–1. https://doi.org/10.3201/eid1609.100386

8. Kaur C.P., Vadivelu J., Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J. Dig. Dis. 2018; 19(5): 262–71. https://doi.org/10.1111/1751-2980.12595

9. Atarashi K., Suda W., Luo C., Kawaguchi T., Motoo I., Narushima S., et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science. 2017; 358(6361): 359–65. https://doi.org/10.1126/science.aan4526

10. Choby J.E., Howard‐Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae — clinical and molecular perspectives (Review). J. Intern. Med. 2020; 287(3): 283–300. https://doi.org/10.1111/joim.13007

11. Jian-Li W., Yuan-Yuan S., Shou-Yu G., Fei-Fei D., Jia-Yu Y., Xue-Hua W., et al. Serotype and virulence genes of Klebsiella pneumoniae isolated from mink and its pathogenesis in mice and mink. Sci. Rep. 2017; 7(1): 17291. https://doi.org/10.1038/s41598-017-17681-8

12. Turton J.F., Payne Z., Coward A., Hopkins K.L., Turton J.A., Doumith M., et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and 'nonhypervirulent' types ST147, ST15 and ST383. J. Med. Microbiol. 2018; 67(1): 118–28. https://doi.org/10.1099/jmm.0.000653

13. Holden V.I., Breen P., Houle S., Dozois C.M., Bachman M.A. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 2016; 7(5): e01397-16. https://doi.org/10.1128/mBio.01397-16

14. Лазарева И.В., Старкова П.С., Агеевец В.А., Волкова М.О., Лебедева М.С., Навацкая А.С. и др. Оценка распространения ректального носительства генов вирулентности и карбапенемаз у пациентов, поступивших на плановую госпитализацию. Антибиотики и химиотерапия. 2018; 63(11–12): 18–23.

15. Fang C., Chuang Y., Shun C., Chang S., Wang J. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 2004; 199(5): 697–705. https://doi.org/10.1084/jem.20030857

16. Lee C.R., Lee J.H., Park K.S., Jeon J.H., Kim Y.B., Cha C.J., et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: еpidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front. Cell Infect. Microbiol. 2017; 7: 483. https://doi.org/10.3389/fcimb.2017.00483

17. Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol. 2018; 56(9): e00776-18. https://doi.org/10.1128/JCM.00776-18

18. Russo T.A., Olson R., Macdonald U., Metzger D., Maltese L.M., Drake E.J., et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014; 82(6): 2356–67. https://doi.org/10.1128/IAI.01667-13

19. Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol. 2014; 52(12): 4377–80. https://doi.org/10.1128/JCM.02316-14

20. Медицинская статистика. Анализ произвольных таблиц сопряженности с использованием критерия хи-квадрат (онлайн калькулятор). Available at: https://medstatistic.ru/calculators/calchit.html

21. Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013; 4(2): 107–18. https://doi.org/10.4161/viru.22718

22. Lee H.C., Chuang Y.C., Yu W.L., Lee N.Y., Chang C.M., Ko N.Y., et al. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteraemia. J. Intern. Med. 2006; 259(6): 606–14. https://doi.org/10.1111/j.1365-2796.2006.01641.x

23. Gorrie C.L., Mirceta M., Wick R.R., Edwards D.J., Thomson N.R., Strugnell R.A., et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin. Infect. Dis. 2017; 65(2): 208–15. https://doi.org/10.1093/cid/cix270

24. Martin R.M., Cao J., Brisse S., Passet V., Wu W., Zhao L., et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere. 2016; 1(5): e00261. https://doi.org/10.1128/mSphere.00261-16

25. Fung C.P., Lin Y.T., Lin J.C., Chen T.L., Yeh K.M., Chang F.Y., et al. Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess. Emerg. Infect. Dis. 2012; 18(8): 1322–5. https://doi.org/10.3201/eid1808.111053

26. Семенова Д.Р., Николаева И.В., Фиалкина С.В., Хаертынов Х.С., Анохин В.А., Валиуллина И.Р. Частота колонизации «гипервирулентными» штаммами Klebsiella pneumoniae новорожденных и грудных детей с внебольничной и нозокомиальной клебсиеллезной инфекцией. Российский вестник перинатологии и педиатрии. 2020; 65(5): 158–63. https://doi.org/10.21508/1027-4065-2020-65-5-158-163

27. Cheng H.Y., Chen Y.S., Wu C.Y., Chang H.Y., Lai Y.C., Peng H.L. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J. Bacteriol. 2010; 192(12): 3144–58. https://doi.org/10.1128/JB.00031-10

28. Фурсова Н.К., Асташкин Е.И., Новикова Т.С., Федюкина Г.Н., Ершова О.Н. Мультирезистентные Klebsiella pneumoniae, вызвавшие тяжёлые формы инфекций у пациентов в отделении нейрореанимации. В кн.: Сборник материалов Всероссийская научно-практическая конференция с международным участием «Молекулярная диагностика и биобезопасность – 2020». М.; 2020: 79–80. https://doi.org/10.36233/978-5-9900432-9-9-79

29. Kislichkina A.A., Lev A.I., Komisarova E.V., Fursova N.K., Myakinina V.P., Mukhina T.N., et al. Genome sequencing and comparative analysis of three hypermucoviscous Klebsiella pneumoniae strains isolated in Russia. Pathog. Dis. Vol. 2017; 75(4). https://doi.org/10.1093/femspd/ftx024

30. Jagnow J., Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology. 2003; 149(Pt. 9): 2397–405. https://doi.org/10.1099/mic.0.26434-0

31. Murphy C.N., Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. 2012; 7(8): 991–1002. https://doi.org/10.2217/fmb.12.74

32. Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., ChuangY.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/ K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis. 2008; 62(2): 1–6. https://doi.org/10.1016/j.diagmicrobio.2008.04.007

33. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One. 2009; 4(3): e4982. https://doi.org/10.1371/journal.pone.0004982

34. Chou H.C., Lee C.Z., Ma L.C., Fang C.T., Chang S.C., Wang J.T. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect. Immun. 2004; 72(7): 3783–92. https://doi.org/10.1128/IAI.72.7.3783-3792.2004

35. Garaizar J., Porwollik S., Echeita A., Rementeria A., Herrera S., Wong R.M., et al. DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar. J. Clin. Microbiol. 2002; 40(6): 2074–8. https://doi.org/10.1128/JCM.40.6.2074-2078.2002

36. Rintoul M.R., Cusa E., Baldoma L., Badia J., Reitzer L., Aguilar J. Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS. J. Mol. Biol. 2002; 324(4): 599–610. https://doi.org/10.1016/s0022-2836(02)01134-8

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 436-444

Multiplex PCR screening for virulence genes of Klebsiella pneumoniae isolated from microbiota of diseased and healthy people

Pay G. V., Rakitina D. V., Sukhina M. A., Yudin S. M., Makarov V. V., Maniya T. R., Zagaynova A. V.

https://doi.org/10.36233/0372-9311-237

Abstract

Introduction. Klebsiella pneumoniae in human microbiota may appear as a part of commensal microbiota, and as hypervirulent pathogen, for example, hypermucoid pathotype. This pathotype is characterized by certain genetic determinants, leading to the possibility of detecting the pathogenic potential of isolates by PCR.

 Aim of the study: to evaluate and compare pathogenic potential of K. pneumoniae isolates from practically healthy people, patients with inflammatory bowel disease (IBD) and extraintestinal infections (ExII).

Materials and methods. Testing was performed with the set of nucleotides for multiplex PCR analysis targeting eight potentially virulent genes with the following functions: ferrum uptake (ybsT, kfu, iutA), adhesion and invasion (mrkD), hypermucoid phenotype and virulent serotypes (mrkD, magA, rmpA, k2) and metabolism of allantoin (allS). PCR assay was used to screen Klebsiella pneumoniae isolates from feces of patients with IBD (69 isolates) and of practically healthy people (68 isolates), and multiresistant isolates from biological material (blood, urine, surgical wounds, bronchoalveolar lavage) of patients with extraintestinal infections (mrExII, 25 isolates).

Results. Results of the testing demonstrated association of four of targeted determinants with the patients diagnoses. YbtS gene was significantly more often found in isolates from IBD (р = 0.024) and mrExII (p < 0.001) groups. RmpA gene was significantly more often detected in IBD group (р = 0.038). Extraintestinal infectious isolates were significantly (р ≤ 0.001) enriched with mrkD and allS genes (р = 0.032).

Conclusion. The most potentially virulent group was isolated from patients with extraintestinal infections, the least virulent — isolates from feces of practically healthy people. The most frequently detected virulence genes were involved in adhesion and hypermucoid phenotype formation.

References

1. Bagley S.T. Habitat association of Klebsiella species. Infect. Control. 1985; 6(2): 52–8. https://doi.org/10.1017/S0195941700062603

2. Jarvis W.R., Munn V.P., Highsmith A.K., Culver D.H., Hughes J.M. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect. Control. 1985; 6(2): 68–74. https://doi.org/10.1017/s0195941700062639

3. Marchaim D., Chopra T., Pogue J.M., Perez F., Hujer A.M., Rudin S., et al. Outbreak of colistin‐resistant, carbapenem‐ resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob. Agents Chemother. 2011; 55(2): 593–9. https://doi.org/10.1128/AAC.01020-10

4. Komisarova E.V., Volozhantsev N.V. Hypervirulent Klebsiella pneumonia: a new infectious threat. 2019; 17(3): 81–9. https://doi.org/10.20953/1729-9225-2019-3-81-89

5. Khaertynov K.S., Anokhin V.A., Davidyuk Y.N., Nicolaeva I.V., Khalioullina S.V., Semyenova D.R., et al. Case of meningitis in a neonate caused by an extended-spectrum-beta-lactamaseproducing strain of hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2017; 8: 1576. https://doi.org/10.3389/fmicb.2017.01576

6. Frazee B.W., Hansen S., Lambert L. Invasive infection with hypermucoviscous Klebsiella pneumoniae: multiple cases presenting to a single emergency department in the United States. Ann. Emerg. Med. 2009; 53(5): 639‐42. https://doi.org/10.1016/j.annemergmed.2008.11.007

7. McCabe R., Lambert L., Frazee B. Invasive Klebsiella pneumoniae infections, California, USA. Emerg. Infect. Dis. 2010; 16(9): 1490–1. https://doi.org/10.3201/eid1609.100386

8. Kaur C.P., Vadivelu J., Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J. Dig. Dis. 2018; 19(5): 262–71. https://doi.org/10.1111/1751-2980.12595

9. Atarashi K., Suda W., Luo C., Kawaguchi T., Motoo I., Narushima S., et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science. 2017; 358(6361): 359–65. https://doi.org/10.1126/science.aan4526

10. Choby J.E., Howard‐Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae — clinical and molecular perspectives (Review). J. Intern. Med. 2020; 287(3): 283–300. https://doi.org/10.1111/joim.13007

11. Jian-Li W., Yuan-Yuan S., Shou-Yu G., Fei-Fei D., Jia-Yu Y., Xue-Hua W., et al. Serotype and virulence genes of Klebsiella pneumoniae isolated from mink and its pathogenesis in mice and mink. Sci. Rep. 2017; 7(1): 17291. https://doi.org/10.1038/s41598-017-17681-8

12. Turton J.F., Payne Z., Coward A., Hopkins K.L., Turton J.A., Doumith M., et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and 'nonhypervirulent' types ST147, ST15 and ST383. J. Med. Microbiol. 2018; 67(1): 118–28. https://doi.org/10.1099/jmm.0.000653

13. Holden V.I., Breen P., Houle S., Dozois C.M., Bachman M.A. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 2016; 7(5): e01397-16. https://doi.org/10.1128/mBio.01397-16

14. Lazareva I.V., Starkova P.S., Ageevets V.A., Volkova M.O., Lebedeva M.S., Navatskaya A.S. i dr. Otsenka rasprostraneniya rektal'nogo nositel'stva genov virulentnosti i karbapenemaz u patsientov, postupivshikh na planovuyu gospitalizatsiyu. Antibiotiki i khimioterapiya. 2018; 63(11–12): 18–23.

15. Fang C., Chuang Y., Shun C., Chang S., Wang J. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 2004; 199(5): 697–705. https://doi.org/10.1084/jem.20030857

16. Lee C.R., Lee J.H., Park K.S., Jeon J.H., Kim Y.B., Cha C.J., et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front. Cell Infect. Microbiol. 2017; 7: 483. https://doi.org/10.3389/fcimb.2017.00483

17. Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol. 2018; 56(9): e00776-18. https://doi.org/10.1128/JCM.00776-18

18. Russo T.A., Olson R., Macdonald U., Metzger D., Maltese L.M., Drake E.J., et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014; 82(6): 2356–67. https://doi.org/10.1128/IAI.01667-13

19. Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol. 2014; 52(12): 4377–80. https://doi.org/10.1128/JCM.02316-14

20. Meditsinskaya statistika. Analiz proizvol'nykh tablits sopryazhennosti s ispol'zovaniem kriteriya khi-kvadrat (onlain kal'kulyator). Available at: https://medstatistic.ru/calculators/calchit.html

21. Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013; 4(2): 107–18. https://doi.org/10.4161/viru.22718

22. Lee H.C., Chuang Y.C., Yu W.L., Lee N.Y., Chang C.M., Ko N.Y., et al. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteraemia. J. Intern. Med. 2006; 259(6): 606–14. https://doi.org/10.1111/j.1365-2796.2006.01641.x

23. Gorrie C.L., Mirceta M., Wick R.R., Edwards D.J., Thomson N.R., Strugnell R.A., et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin. Infect. Dis. 2017; 65(2): 208–15. https://doi.org/10.1093/cid/cix270

24. Martin R.M., Cao J., Brisse S., Passet V., Wu W., Zhao L., et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere. 2016; 1(5): e00261. https://doi.org/10.1128/mSphere.00261-16

25. Fung C.P., Lin Y.T., Lin J.C., Chen T.L., Yeh K.M., Chang F.Y., et al. Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess. Emerg. Infect. Dis. 2012; 18(8): 1322–5. https://doi.org/10.3201/eid1808.111053

26. Semenova D.R., Nikolaeva I.V., Fialkina S.V., Khaertynov Kh.S., Anokhin V.A., Valiullina I.R. Chastota kolonizatsii «gipervirulentnymi» shtammami Klebsiella pneumoniae novorozhdennykh i grudnykh detei s vnebol'nichnoi i nozokomial'noi klebsielleznoi infektsiei. Rossiiskii vestnik perinatologii i pediatrii. 2020; 65(5): 158–63. https://doi.org/10.21508/1027-4065-2020-65-5-158-163

27. Cheng H.Y., Chen Y.S., Wu C.Y., Chang H.Y., Lai Y.C., Peng H.L. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J. Bacteriol. 2010; 192(12): 3144–58. https://doi.org/10.1128/JB.00031-10

28. Fursova N.K., Astashkin E.I., Novikova T.S., Fedyukina G.N., Ershova O.N. Mul'tirezistentnye Klebsiella pneumoniae, vyzvavshie tyazhelye formy infektsii u patsientov v otdelenii neiroreanimatsii. V kn.: Sbornik materialov Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem «Molekulyarnaya diagnostika i biobezopasnost' – 2020». M.; 2020: 79–80. https://doi.org/10.36233/978-5-9900432-9-9-79

29. Kislichkina A.A., Lev A.I., Komisarova E.V., Fursova N.K., Myakinina V.P., Mukhina T.N., et al. Genome sequencing and comparative analysis of three hypermucoviscous Klebsiella pneumoniae strains isolated in Russia. Pathog. Dis. Vol. 2017; 75(4). https://doi.org/10.1093/femspd/ftx024

30. Jagnow J., Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology. 2003; 149(Pt. 9): 2397–405. https://doi.org/10.1099/mic.0.26434-0

31. Murphy C.N., Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. 2012; 7(8): 991–1002. https://doi.org/10.2217/fmb.12.74

32. Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., ChuangY.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/ K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis. 2008; 62(2): 1–6. https://doi.org/10.1016/j.diagmicrobio.2008.04.007

33. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One. 2009; 4(3): e4982. https://doi.org/10.1371/journal.pone.0004982

34. Chou H.C., Lee C.Z., Ma L.C., Fang C.T., Chang S.C., Wang J.T. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect. Immun. 2004; 72(7): 3783–92. https://doi.org/10.1128/IAI.72.7.3783-3792.2004

35. Garaizar J., Porwollik S., Echeita A., Rementeria A., Herrera S., Wong R.M., et al. DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar. J. Clin. Microbiol. 2002; 40(6): 2074–8. https://doi.org/10.1128/JCM.40.6.2074-2078.2002

36. Rintoul M.R., Cusa E., Baldoma L., Badia J., Reitzer L., Aguilar J. Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS. J. Mol. Biol. 2002; 324(4): 599–610. https://doi.org/10.1016/s0022-2836(02)01134-8