Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 397-409
Биологическая характеристика холодоадаптированных вариантов коронавируса SARS-CoV-2
Файзулоев Е. Б., Корчевая Е. Р., Грачева А. В., Самойликов Р. В., Смирнова Д. И., Соколова О. С., Глухов Г. С., Моисеенко А. В., Ленева И. А., Нагиева Ф. Г., Свитич О. А., Зверев В. В.
https://doi.org/10.36233/0372-9311-280Аннотация
Введение. В связи с появлением новых эпидемиологически значимых вариантов SARS-CoV-2 актуальной является разработка живой вакцины, способной обеспечить защиту против широкого спектра антигенных вариантов вируса.
Целью исследования являлись получение и биологическая характеристика аттенуированных путём холодовой адаптации вариантов SARS-CoV-2.
Материалы и методы. Лабораторный штамм SARS-CoV-2 Dubrovka и его варианты культивировали в клетках Vero и Calu-3. Количественное определение вируса проводили путём титрования в клетках Vero и методом полимеразной цепной реакции с обратной транскрипцией в режиме реального времени. Вирионы SARS-CoV-2 характеризовали методом трансмиссионной электронной микроскопии. Геномные последовательности вируса определяли методом нанопорового секвенирования. Аттенуационный (att) фенотип вариантов SARS-CoV-2 определяли на животной модели COVID-19 на сирийских хомяках.
Результаты. В результате длительного пассирования штамма Dubrovka в культуре клеток Vero при постепенно понижаемой до 23ºС температуре и последующего клонирования получены холодоадаптированные (ca, cold-adapted) варианты SARS-CoV-2 Dubrovka-са-B4 и Dubrovka-са-D2. В геномах ca-вариантов обнаружено до 20 нуклеотидных и 18 аминокислотных замен. Са-варианты, в отличие от родоначального штамма Dubrovka, эффективно размножались при 23ºС, а вариант Dubrovka-са-D2 имел температурочувствительный (ts) фенотип (не размножался при температуре 39ºС). Са-варианты вируса плохо размножались при температуре 37ºС в культуре клеток лёгких человека Calu-3, что, наряду с ts-фенотипом, может быть маркером аттенуации вируса по отношению к человеку. При интраназальном заражении сирийских хомяков ca-варианты вируса проявили аттенуационный фенотип — не приводили к снижению аппетита, вялости, сонливости, не замедляли прироста массы тела, значительно медленнее размножались в лёгких и мозге по сравнению с вирулентным штаммом Dubrovka.
Заключение. Полученные в настоящей работе аттенуированные са-варианты SARS-CoV-2 Dubrovkaса-B4 и Dubrovka-са-D2 представляют интерес для дальнейшего исследования в качестве кандидатных вакцинных штаммов для создания живой аттенуированной вакцины против COVID-19.
Список литературы
1. Francis A.I., Ghany S., Gilkes T., Umakanthan S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2022; 98(1159): 389–94. https://doi.org/10.1136/postgradmedj-2021-140654
2. Marfe G., Perna S., Shukla A.K. Effectiveness of COVID-19 vaccines and their challenges (Review). Exp. Ther. Med. 2021; 22(6):1407. https://doi.org/10.3892/etm.2021.10843
3. Marcelin J.R., Pettifor A., Janes H., Brown E.R., Kublin J.G., Stephenson K.E. COVID-19 vaccines and SARS-CoV-2 transmission in the era of new variants: A review and perspective. Open Forum Infect. Dis. 2022; 9(5): ofac124. https://doi.org/10.1093/ofid/ofac124
4. Kandimalla R., Chakraborty P., Vallamkondu J., Chaudhary A., Samanta S., Reddy P.H., et al. Counting on COVID-19 vaccine: insights into the current strategies, progress and future challenges. Biomedicines. 2021; 9(11): 1740. https://doi.org/10.3390/biomedicines9111740
5. Kozlovskaya L.I., Piniaeva A.N., Ignatyev G.M., Gordeychuk I.V., Volok V.P., Rogova Y.V., et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect. 2021; 10(1): 1790–806. https://doi.org/10.1080/22221751.2021.1971569
6. Gómez-Carballa A., Pardo-Seco J., Bello X., Martinón-Torres F., Salas A. Superspreading in the emergence of COVID-19 variants. Trends Genet. 2021; 37(12): 1069–80. https://doi.org/10.1016/j.tig.2021.09.003
7. Nikonova A.A., Faizuloev E.B., Gracheva A.V., Isakov I.Y., Zverev V.V. Genetic diversity and evolution of the biological features of the pandemic SARS-CoV-2. Acta Naturae. 2021; 13(3): 77–88. https://doi.org/10.32607/actanaturae.11337
8. Choi J.Y., Smith D.M. SARS-CoV-2 variants of concern. Yonsei Med. J. 2021; 62(11): 961–8. https://doi.org/10.3349/ymj.2021.62.11.961
9. Mathieu E., Ritchie H., Ortiz-Ospina E., Roser M., Hasell J., Appel C., et al. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021; 5(7): 947–53. https://doi.org/10.1038/s41562-021-01122-8
10. Dupont L., Snell L.B., Graham C., Seow J., Merrick B., Lechmere T., et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat. Microbiol. 2021; 6(11): 1433–42. https://doi.org/10.1038/s41564-021-00974-0
11. Tao K., Tzou PL., Nouhin J., Gupta R.K., de Oliveira T., Kosakovsky Pond S.L., et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021; 22(12): 757–73. https://doi.org/10.1038/s41576-021-00408-x.
12. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2021; 602(7896): 300–6. https://doi.org/10.1038/s41586-021-04266-9
13. Lu L., Mok B.W., Chen L.L., Chan J.M., Tsang O.T., Lam B.H., et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin. Infect. Dis. 2021; ciab1041. https://doi.org/10.1093/cid/ciab1041
14. Bowen J.E., Sprouse K.R., Walls A.C., Mazzitelli I.G., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. bioRxiv. 2022. Preprint. https://doi.org/10.1101/2022.03.15.484542
15. Dejnirattisai W., Huo J., Zhou D., Zahradník J., Supasa P., Liu C., et al. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.12.03.471045
16. Wang Y., Ma Y., Xu Y., Liu J., Li X., Chen Y., et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg. Microbes Infect. 2022; 11(1): 424–7. https://doi.org/10.1080/22221751.2022.2027219
17. Sheward D.J., Kim C., Ehling R.A., Pankow A., Dopico X.C., Martin D.P., et al. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron). bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.12.19.473354
18. VanBlargan L.A., Errico J.M., Halfmann P.J., Zost S.J., Crowe J.E. Jr., Purcell L.A., et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022; 28(3): 490–5. https://doi.org/10.1038/s41591-021-01678-y
19. Maassab H.F., DeBorde D.C. Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine. 1985; 3(5): 355–69. https://doi.org/10.1016/0264-410x(85)90124-0
20. Грачёва А.В., Корчевая Е.Р., Кудряшова А.М., Борисова О.В., Петруша О.А., Смирнова Д.И. и др. Адаптация МТТ-теста для определения нейтрализующих антител к вирусу SARS-CoV-2. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(3): 253–65. https://doi.org/10.36233/0372-9311-136
21. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
22. Chan J.F., Yip C.C., To K.K., Tang T.H., Wong S.C., Leung K.H., et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol. 2020; 58(5): e00310-20. https://doi.org/10.1128/JCM.00310-20
23. Reiling S.J., Chen S.H., Roy A.M., Quick J., Ragoussis I. SARSCoV-2 McGill Nanopore sequencing protocol SuperScript IV_42C_ArticV3. Available at: https://www.protocols.io/view/sars-cov-2-mcgill-nanopore-sequencing-protocol-supq26g7b25klwz/v1
24. Liu C., Mendonça L., Yang Y., Gao Y., Shen C., Liu J., et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by Cryo-EM and Cryo-ET. Structure. 2020; 28(11): 1218–24.e4. https://doi.org/10.1016/j.str.2020.10.001
25. Minor P.D. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015; 479-480: 379–92. https://doi.org/10.1016/j.virol.2015.03.032
26. Subbarao K. Live attenuated cold-adapted influenza vaccines. Cold Spring Harb. Perspect. Med. 2021; 11(9): a038653. https://doi.org/10.1101/cshperspect.a038653
27. Alexandrova G.I., Smorodintsev A.A. Obtaining of an additionally attenuated vaccinating cryophilic influenza strain. Rev. Roum. Inframicrobiol. 1965; 2(3): 179–86.
28. Ghendon Y.Z., Polezhaev F.I., Lisovskaya K.V., Medvedeva T.E., Alexandrova G.I., Klimov A.I. Recombinant cold-adapted attenuated influenza A vaccines for use in children: molecular genetic analysis of the cold-adapted donor and recombinants. Infect. Immun. 1984; 44: 730–3. https://doi.org/10.1128/IAI.44.3.730-733.1984
29. Maassab H.F. Adaptation and growth characteristics of influenza virus at 25 C. Nature. 1967; 213(5076): 612–4. https://doi.org/10.1038/213612a0
30. Seo S.H., Jang Y. Cold-adapted live attenuated SARS-Cov-2 vaccine completely protects human ACE2 transgenic mice from SARS-CoV-2 infection. Vaccines (Basel). 2020; 8(4): 584. https://doi.org/10.3390/vaccines8040584
31. Okamura S., Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine. 2021; 39(39): 5719–26. https://doi.org/10.1016/j.vaccine.2021.08.018
32. Okamura S., Kashiwabara A., Suzuki H., Ueno S., Miyazato P., Takekawa S., et al. Live attenuated SARS-CoV-2 vaccine candidate: Protective immunity without serious lung lesions in Syrian hamsters. bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.02.15.430863
Journal of microbiology, epidemiology and immunobiology. 2022; 99: 397-409
Biological characterization of cold-adapted SARS-CoV-2 variants
Faizuloev E. B., Korchevaya E. R., Gracheva A. V., Samoilikov R. V., Smirnova D. I., Sokolova O. S., Glukhov G. S., Moiseenko A. V., Leneva I. A., Nagieva F. G., Svitich O. A., Zverev V. V.
https://doi.org/10.36233/0372-9311-280Abstract
Introduction. The emergence of new epidemiologically significant variants of SARS-CoV-2 has shifted emphasis to development of a live vaccine, which would be able to provide protection against a wide range of antigenic variants of the virus.
The aim of the study was to obtain SARS-CoV-2 variants attenuated through cold adaptation and to provide their biological characterization.
Materials and methods. The Dubrovka laboratory strain of SARS-CoV-2 and its variants were cultured on Vero and Calu-3 cells. The virus quantification was performed by virus titration in Vero cells and by real-time reverse transcription-polymerase chain reaction. SARS-CoV-2 virions were analyzed using transmission electron microscopy. Genome sequences of the virus were identified by nanopore sequencing. The attenuation (att) phenotype of SARS-CoV-2 variants was identified using Syrian hamsters as an animal model for COVID-19.
Results. Cold-adapted (ca) SARS-CoV-2 variants – Dubrovka-ca-B4 and Dubrovka-ca-D2 were produced by continued passaging of the Dubrovka strain in the Vero cell culture at the temperature being gradually decreased to 23ºC and by subsequent cloning. Up to 20 nucleotide substitutions and 18 amino acid substitutions were detected in genomes of ca-variants. Ca-variants, as distinct from the parent Dubrovka strain, actively replicated at 23ºC, while the Dubrovka-ca-D2 variant had a temperature-sensitive (ts) phenotype (did not replicate at 39ºC). Ca-variants of the virus replicated poorly at 37ºC in the Calu-3 human lung cell culture, which, along with the ts-phenotype, can be a marker of virus attenuation for humans. In the intranasally infected Syrian hamsters, ca-variants of the virus demonstrated an attenuation phenotype: they did not cause loss of appetite, fatigue, drowsiness, did not slow down weight gain, replicating much more slowly in the lungs and brain compared to the virulent Dubrovka strain.
Conclusion. The obtained attenuated SARS-CoV-2 ca-variants, Dubrovka-ca-B4 and Dubrovka-ca-D2, should be studied further as candidate vaccine strains for a live attenuated vaccine against COVID-19.
References
1. Francis A.I., Ghany S., Gilkes T., Umakanthan S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2022; 98(1159): 389–94. https://doi.org/10.1136/postgradmedj-2021-140654
2. Marfe G., Perna S., Shukla A.K. Effectiveness of COVID-19 vaccines and their challenges (Review). Exp. Ther. Med. 2021; 22(6):1407. https://doi.org/10.3892/etm.2021.10843
3. Marcelin J.R., Pettifor A., Janes H., Brown E.R., Kublin J.G., Stephenson K.E. COVID-19 vaccines and SARS-CoV-2 transmission in the era of new variants: A review and perspective. Open Forum Infect. Dis. 2022; 9(5): ofac124. https://doi.org/10.1093/ofid/ofac124
4. Kandimalla R., Chakraborty P., Vallamkondu J., Chaudhary A., Samanta S., Reddy P.H., et al. Counting on COVID-19 vaccine: insights into the current strategies, progress and future challenges. Biomedicines. 2021; 9(11): 1740. https://doi.org/10.3390/biomedicines9111740
5. Kozlovskaya L.I., Piniaeva A.N., Ignatyev G.M., Gordeychuk I.V., Volok V.P., Rogova Y.V., et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect. 2021; 10(1): 1790–806. https://doi.org/10.1080/22221751.2021.1971569
6. Gómez-Carballa A., Pardo-Seco J., Bello X., Martinón-Torres F., Salas A. Superspreading in the emergence of COVID-19 variants. Trends Genet. 2021; 37(12): 1069–80. https://doi.org/10.1016/j.tig.2021.09.003
7. Nikonova A.A., Faizuloev E.B., Gracheva A.V., Isakov I.Y., Zverev V.V. Genetic diversity and evolution of the biological features of the pandemic SARS-CoV-2. Acta Naturae. 2021; 13(3): 77–88. https://doi.org/10.32607/actanaturae.11337
8. Choi J.Y., Smith D.M. SARS-CoV-2 variants of concern. Yonsei Med. J. 2021; 62(11): 961–8. https://doi.org/10.3349/ymj.2021.62.11.961
9. Mathieu E., Ritchie H., Ortiz-Ospina E., Roser M., Hasell J., Appel C., et al. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021; 5(7): 947–53. https://doi.org/10.1038/s41562-021-01122-8
10. Dupont L., Snell L.B., Graham C., Seow J., Merrick B., Lechmere T., et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat. Microbiol. 2021; 6(11): 1433–42. https://doi.org/10.1038/s41564-021-00974-0
11. Tao K., Tzou PL., Nouhin J., Gupta R.K., de Oliveira T., Kosakovsky Pond S.L., et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021; 22(12): 757–73. https://doi.org/10.1038/s41576-021-00408-x.
12. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2021; 602(7896): 300–6. https://doi.org/10.1038/s41586-021-04266-9
13. Lu L., Mok B.W., Chen L.L., Chan J.M., Tsang O.T., Lam B.H., et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin. Infect. Dis. 2021; ciab1041. https://doi.org/10.1093/cid/ciab1041
14. Bowen J.E., Sprouse K.R., Walls A.C., Mazzitelli I.G., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. bioRxiv. 2022. Preprint. https://doi.org/10.1101/2022.03.15.484542
15. Dejnirattisai W., Huo J., Zhou D., Zahradník J., Supasa P., Liu C., et al. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.12.03.471045
16. Wang Y., Ma Y., Xu Y., Liu J., Li X., Chen Y., et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg. Microbes Infect. 2022; 11(1): 424–7. https://doi.org/10.1080/22221751.2022.2027219
17. Sheward D.J., Kim C., Ehling R.A., Pankow A., Dopico X.C., Martin D.P., et al. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron). bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.12.19.473354
18. VanBlargan L.A., Errico J.M., Halfmann P.J., Zost S.J., Crowe J.E. Jr., Purcell L.A., et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022; 28(3): 490–5. https://doi.org/10.1038/s41591-021-01678-y
19. Maassab H.F., DeBorde D.C. Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine. 1985; 3(5): 355–69. https://doi.org/10.1016/0264-410x(85)90124-0
20. Gracheva A.V., Korchevaya E.R., Kudryashova A.M., Borisova O.V., Petrusha O.A., Smirnova D.I. i dr. Adaptatsiya MTT-testa dlya opredeleniya neitralizuyushchikh antitel k virusu SARS-CoV-2. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(3): 253–65. https://doi.org/10.36233/0372-9311-136
21. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
22. Chan J.F., Yip C.C., To K.K., Tang T.H., Wong S.C., Leung K.H., et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol. 2020; 58(5): e00310-20. https://doi.org/10.1128/JCM.00310-20
23. Reiling S.J., Chen S.H., Roy A.M., Quick J., Ragoussis I. SARSCoV-2 McGill Nanopore sequencing protocol SuperScript IV_42C_ArticV3. Available at: https://www.protocols.io/view/sars-cov-2-mcgill-nanopore-sequencing-protocol-supq26g7b25klwz/v1
24. Liu C., Mendonça L., Yang Y., Gao Y., Shen C., Liu J., et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by Cryo-EM and Cryo-ET. Structure. 2020; 28(11): 1218–24.e4. https://doi.org/10.1016/j.str.2020.10.001
25. Minor P.D. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015; 479-480: 379–92. https://doi.org/10.1016/j.virol.2015.03.032
26. Subbarao K. Live attenuated cold-adapted influenza vaccines. Cold Spring Harb. Perspect. Med. 2021; 11(9): a038653. https://doi.org/10.1101/cshperspect.a038653
27. Alexandrova G.I., Smorodintsev A.A. Obtaining of an additionally attenuated vaccinating cryophilic influenza strain. Rev. Roum. Inframicrobiol. 1965; 2(3): 179–86.
28. Ghendon Y.Z., Polezhaev F.I., Lisovskaya K.V., Medvedeva T.E., Alexandrova G.I., Klimov A.I. Recombinant cold-adapted attenuated influenza A vaccines for use in children: molecular genetic analysis of the cold-adapted donor and recombinants. Infect. Immun. 1984; 44: 730–3. https://doi.org/10.1128/IAI.44.3.730-733.1984
29. Maassab H.F. Adaptation and growth characteristics of influenza virus at 25 C. Nature. 1967; 213(5076): 612–4. https://doi.org/10.1038/213612a0
30. Seo S.H., Jang Y. Cold-adapted live attenuated SARS-Cov-2 vaccine completely protects human ACE2 transgenic mice from SARS-CoV-2 infection. Vaccines (Basel). 2020; 8(4): 584. https://doi.org/10.3390/vaccines8040584
31. Okamura S., Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine. 2021; 39(39): 5719–26. https://doi.org/10.1016/j.vaccine.2021.08.018
32. Okamura S., Kashiwabara A., Suzuki H., Ueno S., Miyazato P., Takekawa S., et al. Live attenuated SARS-CoV-2 vaccine candidate: Protective immunity without serious lung lesions in Syrian hamsters. bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.02.15.430863
События
-
Конференция Антиплагиат «Value Guard Conference» 14 октября 2025 >>>
1 окт 2025 | 10:14 -
К платформе Elpub присоединился журнал «Международный аспирантский вестник. Русский язык за рубежом» >>>
29 сен 2025 | 13:29 -
Журнал «Спутник 2.0. Россия в мире» присоединился к Elpub! >>>
26 сен 2025 | 13:27 -
К платформе Elpub присоединился журнал «Русский язык за рубежом» >>>
26 сен 2025 | 13:27 -
Журнал «Цифровые решения и технологии искусственного интеллекта» присоединился к Elpub >>>
23 сен 2025 | 12:37